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FORBWORD TO THE STUDENT

The Caloulus deals with problems in whigh the
variation of quantities iz the essealial elew
ment. The object of the course for whioch_ this
book was writlten is to dive an earlg familiari-
ty with the Caloulus as a means of thinkingd aocw
ouratelg about variables. The oconceptions of
rates of inorease_and of average and iastanta-
neous valuas should be gcarefully thoudht oub,
and illustrations, which abound in daily life
ags well as in the studg of. goience, should »ne
looked for in az many directions as possible.

The problems are an important feature of the
coursa. Lhey are not to be solved by the sudb-
gtitution of Jdata into special formulas bubl by
the application of. Seneral principles. Tach one
must o2 clzarly concelved and analyzed ia the
mind, and usually a diagram must be drawn and
dimensioned before one_g2an badinc to write. the
algebraical and aumerical parts of the solution
Many of Lrhe problems are imporitant ones takean
from the sciences: some which ssem very artifi-
cial are nevertheleoss of dreat service to {he
student in learaing to think in terms of vari-
ables and thelr vates.:

Yhile the drceatest result of the study of the
Caloulus 13 in toachindg the student to thiank
agcurately about the pheanomeaa of varyiag guan-
tities, there is in many of the problems a con-
siderabpls anount of aljdebralcal traansformation
aad aumerizal coampubation. Sraab atbtention mush
be diven to tais side of bthe work. Not only aro
tasae subjects taudht in the procedind term and
raviewsd as occasion affords, butb thei must be
soatiaually stadied thruwout the mabtaematical
anurse and zan be affectivaely aastared oaly by
aontiaaal careful practice. .
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j 2= n2=
Risht triangle: a2+b2%=c? - n -x% -~
Area = ¥,a0 € /1 >~
See also page 37 <——HA—— = T
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Rectansular fisures: a®?t+02=c®, 2%+02+c®=»2

trea = base X ali. . : -

Jol. = besc x alt. L
“ircle: Circunference = 2nr, Area = nr?

arc =rx3 (8 in radlanu) Sector=Y,r23 . <8
Sohers: irez = 4ar?, Volume = 75nr

<

~
...... -

/3
t.

ayliader or prisu: Volume = bass x altitude.

sone or pyramid: Volume = Y%, obase x altituds

n radians = 13C° 1 rad=574%, 19,0174+ ra

g N
vel

logg =(2.302)x10g,67, lodyoll =(.43429+)x]0

1 = 3.1415S2+, or approximately, 22/7
e = 2.7158281+, or approximately, 19/7
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ZARLY

fhe CALCULUS 1is
whicn treats of oroocleuxs

CALCULUS

tnat bdranch of Matnematics:
in which an =ssential

element is the variztion of gquantities involved.

FUNCTIONS. #hen twe variables are s¢ connsci~-

ed that their values are

ray redard one as

mutually dependent, we
independznt and controlling

the other: the labtter is then called 2 tunc-

tion of Lhe former, while the controllinZ vari-

able is called the Arsument of the function.
For examples of such relations, consider:

(Argument,
Independent, or

Control varsable:

ANGLE .

TIME a train has run
RADIUS of a circle

DEPTH under waber

Anﬁ U 4B 3 .

TUMBER 11‘ ma‘::-iln of table

t
x of point of curve

REPRESENIATICK ¥

Function, or
lependent varzabla

COSINE of angle

DISTANGE travelled

ARBA of circ le

PREESURE of water

its CcUB

sorres gondiﬁf HUMBER
in body of tavle

24+3

y of same voint

#ONCTICNS,  There arz taree

or1n01pal ways ot expressin¢ the rslation de-
tween two mutually conanscted variablss:

1. ANALYIICAL, by 2
2. TABULAR, by numbers’in
the argument deins? 1
3RAPHICAL, by a curvh

varlaoiv, and

"CRMULA or verhal rvule,
the body cf 2 taole,
Lz mardin,

whoss x = thzs zontrol

tha funclbion.

S ——
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FUNCTIONAL WOTATIVN. To indicate‘that y is a

function of x without spscifyind Lhe pature of
tpne fupctional rclztion, we wribs

~

y=£( ), or  y=F( ), or y=¢( ) ste,
3ame special m=zapning may be Jiven to . ths sywool
£(x) F(x) Copx)

50 that =ithar shall denote (without dzclaring)
what operations are to be performsd upcn Lhs
argusent in calculating the corresponding value
of the function, Whatever quantity is placsd in
ths parentnesis is to pe taksn as the ardument.

for a definition of such a symbol as #( ), ws
put - The formula for the func-
{x) & ition whon x is the argument

vha syebel "=" is ussd to zzll a2ttzntion to ths
fact bthat a DEFINITION 1is b=2inps given, Than
when #( ) appsars witn soms othsr guantity in
th2 parsntnssis, thab guapbtity is to L= substi-
tubzd for x in the #(x) forwula. Phus if #(x) =
a t P(y)=2y2+1, (0)=1, 7(1)=3, znd

2 YErl=Zx B+
ILLUSTRAD I VE PROBLEY, Supposz ws
wish Lo rzprassnt  ths arsz of z
right triandls whoss hyoothsnuss
is 5 2w, as 2 function zontrollsd

h of ons ls3,

K >
by tiaz lenst
bis

1. 8y a formula: 8 x = ths lsnith of tu“
coatrolling leg Than the othar los is /L/3~A 2
and ths area is ths function F(x) = 4x/[25-x2)

2. 3y tadla:

Leg = O 1 2 4 3 (¥ argin)

ARBA

3
8] 2.449 4,583 8 & O (hody)




3. By a 3raph: The -=quation
of the graph will be y=jx/25-x%
and the table just calculated
may be used in plotting it,

FROBLEMS IEXE
1. If f(x)=2x-3, give in tabular form ths val~
ues of £(0), £(1), £(2), £(3), and £(4)

2. 3iven f(x)=2%, show that f(x) f(y)=f(x+y).
3. Jiven f(x)=/25-x%, what curvs is y=f(X)7T

4, Dozs f(2x) = 2°f(x), 1st, when f(x)=3x=-47T
3nd, when f(x)=sin(x)?

5, if 9(x)= 1+X, show that @(&X) = - 1/
-X 1-x

- N w £ oeye

&. nizh is grsater: £(3) or £(4)7 f£(x)=25-x2.

7. Doss F(x)=f(y)=f(x-y) if: 1st, £(x)=2xT 2nd,
if f(x)=x27T 5rd, y=f(x) is an arbitrary curveT?
g5, laoulatz ths function "Area  of squilateral
trianglae", regardsd zs controlled by the length
of ons side, for valuss of the ardumsnt from O
to 1 foot at intervals of 2 inchas.

9. Represznt by formula and by Sraph:, the AREA
of a cirecls ragardsd as funcvion of its radius.
10, Reprasssnt by forwula and by table: the AREA
of a r=2ctanils inscribed in a circle of radius
5 ft, using as arsumznt the length of one side,
ladoulate the funstion for wvaluss of the argu-
reat at intervals of 1 ft. from O to 5 ft.

11. kxprz2ss by graph and forrula the relation
betwszn ths tims rsquirsd to do a jod and the
puwbsr of msn raquired to do it. \

12, Express the rslation y=f(x) graphically if
y is 2 Centigrads tempsraiure and x ths corre-




sponding Fahrenheit temperature.

%, .xpress by graph and table the function
( ), if x is the weignt of a letter in ourcss
na t(x) the required postage, from x=0 to x=5.
4

1. Lxprsss by graph and formulz the relation
beiwaan a function and its argument if the ar-
gurent runs from 1 to 5 while ths function
st°ad11y dezreases from 7 to -1,

15. Represent y=#(x) and r= 9(x) Dby alssoraic
forculas if vy is the volure of a cylinler in-
serived in a cone of altitude H, radius of bdass
X, andi x is the radius of the oase of the cyl=-
inder and «¢(x) its altitude,

INCREMENIS. lhe symool "Ax" is rsad "delta-x"
or "increment of x" and denotes zn arvitrary
arount (usually small sometimes infinitesimal)
addzd to x. '

Def, An infinitesimal is a variable which ap-
proaches zero as a limit,

AF(x) rzpreseats the increase in F( ) corre-
sponding to the change in the argument from x
to x+Ax, By Lhis incrsase we msan

New value wminzs Formsr valus
that is:
AP(x) = F(x+ax) = F(x).

yobte how w2 find une increment of a function
when the function is expressed in each way:

1. Analytlcally. If F(x)21/x, and Ax is added
to x, F( ) becomes F(x+Ax)=1/(x+Ax), Subtract-
ing we 2ot AF(x) =z 1/{x+Ax) - 1/x, and reducing
to coumnon donomxnator. AF(x) = -Ax/[x(x+Ax)].

2, #ith a2 teole. in a table with valuss of
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#(x) in tane oody, Ax would be the interval be-
pwsen two nuwoers in the margin, and AF(x) the
corresponding taoular difference in the body of
the taole. (Ooservs thet these are not infini-
tesimal, but finite, iancrements.)
thus in tioe follcwing table, Ax is uniformly

equal to .5, wails A¢{x) veries in the differ—
snt intsrvels as shown in the third line:.

7 = 1.5 2.0 2.5 3.0 3.5 2ﬁarg'a).
p(x) =2 2/x = .67 .30 .40 .83 .22 E'.c.u,y}
AP{x) = w17 =i10 «. 07 . 04 (ciffa

Y

3. Graphically. If A and 3 are
two neignooring points on the graph
of y=f{x), then the run from 4 to B
rapresents the value of Ax, and the
corresponding rise is Ay or AF(x).

Wnen either of the corresponding changes, Ax
or AF(x), is 2 DECREMENT, the increnent—symdol
is redarded as representing 2 negative number.
Thus if y=35-2x, and x increases
from 8 to 15, Ax=+7, out y de-
creases from 19 to 5, and so we
have Ay= -14.

PRO3LEYS

1. If £(x)=3x?%, x=2 w.nd Ax=1, calculate y=f(x),
f(x+Ax), and Af(x).

2. Show by diasram corresponding valugs of Ax
and Ay at the point (2,1) on the curve 3y=x3.
3. At ths point (3,4) on the curve x%+y?=25
what can you say of the signs of Ax and Ay?

4. If a function, y=f(x), is given by a taole,

say f(x) = lod sin x, and Ax is the interval of
the tablse, say 1 aminute, what symbel denotes




the tabular difference?
5. find Ay if y=2x2=x. Ay=(4x-1+Ax)Ax.

6. Find Ay if y=1/x2. Ay = (2x-0x)Ax
Y = = %®¥(x+Ax)%

7. If £(x) = vx, find Af(x) and rationalize its

numsrator. _ Ax
() = Zx 5 /xehx
8, If x2+y*=a%, verify that 2% + Ax

AyAx== 2y By

g9, If it costs x dollars to go y miles, show

that 100(Ax/Ay) 1is the "mileage” paid for a

certain saction of the journey.

10, If % 1is a boy's weight at y y2ars of age,

what is AY for ths casz of y=12 and Ay=107

11. If f(x)=sin x, what is Af(x) when x=30° and

Ax=15°T

12, ¥hat two facts do "T/W tons per week" and

AT /A% tons per week" rzfer to if T tons of

aarth ars dug ouvs oy ths end of W wesks?

13. 4hen Ax is positivz and x, Ax, anl xX+Ax ars

first quadrant znzlss, wshich of thess functions

havs positive increwsnts and which nsgative?
sinx, 2o0sx, tanx, cob x,

14. If a train has coms M milss 1in the last H

aours, contrast ths meanings of ¥/ and AM/AH.

15. If (x,y) moves along the curve y=f(x), y/x
is the tangsnt of what angleT Show that Ay/Ax
is the slope of a chordi whose horizontal pro-
jection is Ax. Use a diagram ‘
16, <Calzsulate ths decrsmsnt of y as x increasss
From x=2 to x=3 if y=4x-x?2, Ay = =1
17. If I is the interval bestween arguments in s
tahle and T = ths tabular differencs, show that



the rule for interpolation is

Af(x) =

18, If y miles = distance travelled and t hours
= time elapsed, explain why y/t is ths averags
4peed for the whole time only on condition that
y and t are variables starting simultansously
at zero, although Ay/At 1is ths averags spesd
for the interval denoted by At without such a
condition,

1 .
19. 1f £(x) = 7% 5 » find SffEd (ﬁ4x+Ax)(1+x)
20. Draw a curve for which any inceszant in x
producss a decrsment in y.
'21. Calculate Ay/Ax to tbree decimal plaszss if
y = lod40x, fOor a value of x near x=54. .00»s

RATES OF INCREASE.

If w2 considesr two corresponding statzs (wiih

a 3mall interval betwean then) of a function
and its control wvariable, ths 2 i
fupction divided by ths changs in 0
variable gives ths function's avs r*ﬁﬂ rata of
changde per unit incrsass in toe conivol va

ble in that interval. OUbserving propsr 3IGLKS,
and dividing INCREMALS, instz ad of chan: 23,

get ths , \ e
ATERAZE RATE OF 1RURWASH
for ths intsprval nhetwsen the two statss.
If the interval b= taken still shorter, therse
will be less variation of the RATE ip differsnt
parts of the intarval, and we take as the EXACT
RATE at any statz ths LIMIT approached by such

Jk«




an average rate when the interval shrianks down
vpon the state in question.

ILLUSTRATIVe PROBLEM. #e wisn bto fFind the
spsed of 2 body sliding down 2 smoobtp inclined
plane which makes an angle of 5° with the hori-
zontal. 1he two connected variaolss are:

I'ne number of seconds since slitins oegan,
taksp as the CONIROL vzriaole and reeresent—
ed by "t".

Ihe numoer of fset from the foot of the in-

{cline to the moving body ressrded 25 a fune-

tion of t, "f(t)", and represented oy "s",
Ine ruolation s=f(t) for this case uaay oe repre-
sentel in either of the three ways (sec page 1)
as follows:

TASLRE TORUULA
t=.0 s=.512
.1 . 498
'2 044‘3 s = .518 — 1'6 t’f,i
. 3 . 3863
.3 . 244
. D . 112

1st. Using the lable: The avsrage speed for
any intsrval will o As/At. Consider first the
interval between the instants wher t=.3 and t=
.4, .1 vdeing therstore zguzl to At, and ~.112 =
tne corrssponding As, s Ddeins a d2creasing
quantity as t increaszs. Dividing As by At we
nave =1.12 ft.ner sec. as the avsrase spsed for
tuls interval. The ainus sisn indicates that
toe speed is TOYARD 2nd not awsy from the point
from which s is measured.

In the opreceding intsrval, t=,2 to t=.3, the
average speed is only -.30 ft. oor s2 §
not find exact spesids frow a table

by



2nd, Using the Oraph: The instents t=.3 and
t=:4 are represented by the points 4 and B. The
rua from A4 to B represents At, and the rise
from A to B{which happens to be nesative’in this
case) represents As. The quotient, As/At,
represents ths SLOPE OF AB as well as the aver-
age SPEED for the interval. If we think of a
long line, pivoted at A, and turn- -
ing as B approaches A, the slope
of this line shows how the average
speed changes as the interval is
taken shorter and shorter.

The slope of the TANGENT at A is
the limit approached by this quotient, hence
the slope of the tangent at A represents the
exact speed at the instant when t=.3 sec. The
graph gives us more precise information than
the taole, but owing to the techniecal ditficul-
ties of drawing and measuring, our result is
still only avproximate.

3rd. Using the Formula: We take the state
corresponding to the 3Jeneral values, s and ¢,
and @ later state when they bhave become s+hs
and t+At. The formula gives for these states
s 512 - 1.8 t2
and stAs = ,512 = 1.5(t+At)2
sxpanding and subtracting, we odtain
As = =3.2 t At = 1.6 (At)?
dividing, we get the average speed foraula
As/At = =3.2 t - 1.8 At
§e can then sse tnat as the interval is pro-
gressively shortened, the term "-1.6 At" gets
smaller and smaller, and so we can take the
1imit and write the exact spesd fornula
speed =(-3.2 t) tt.per sec.

il




From this formula we find that the exact spsed
when t=.3 1is -.98 ft.per sec., the minus sisin
pmeaning that the spesd is in such a dirsction
that the distance, s, is decreasingd.

Phe functiomal notation (ses page 2) =naolss
us t0 put into compact and convsnient form a
statement of the essential steps in ths thres
cases describad above,

5=f(t) rspresents the reslation betwssn ths
space (s fect) and ths time (4 seconds) whether
this relation is z2xnibit=d to the wind by 3 ta-
ble, a graph, or a formula, s and s+ds rspre-
sent the two valuds of +the space which corre-
spond to the two times, t and t+At. Lhe two
statss considersd yisld ths two squations

s = 1 (t)
s+As = £(t+AL)
subtracting As = F(b+At) - £(t)

dividing by At s3 then 3=zt the agverade ratbe

As o £(o+At) = £(t)

A% AL
and, takipns ths limit as ths interval shortens,
w2 32t the eoxacst rate., This rate is a function
derived from £(t), and is called the DERIVATIVE
of £(t), and is repressnted by a special func-
tional symbol, namely

£1(¢)
The definition of this symbol is thsrefors

fr(g) = limit As limit £(t+at)=€()
(t) = st 8¢ O aem At

The symbol 7 3 ¥ means "approaches as a limit

The process just outlined is of suzh frsgusnt
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recurrence that it is important awd helpful to
use special names for its succsssive featurss:

Functional relation: s = f(t)
Corresponding increments As and At

Augmented variables s+As and t+ Ak
dugmented relation s+as = f{t+AL)
bifference equation As = f{t+At) - f(t)

Lifference quotient sfat  =lj(tvat)-f(t)]/at

Jberived fumction, or Y. Linit of the
DERIVATIVE with resﬁ.} fi(t) ={ Lifference quo.
to the argument, ¢, 2s it # o

I'he various stsps 1in tais procoess, up to the
last, are mabttzsrs of arithmsetic or alosbra, In
the last step we discovsr ths limiting value by
inspection 1if possible. Yo wxakz this possibls
it is usuvally necessary to TRALSFORIN ths dif-
ference quotisnt to such 2z form that infinites~
imal factors may b2 rsmovad from nunsrater and
iznominator. In ths case of 7(x) = sin x [pass
24) and f(x) = lo3 x, [pad:z 591 unusuil devizes
ars nscsssary in the lirit-uvziing step. ditn
the sinmplsr algshraic functions, rzauction to
lowast tarms, or to comuon dznominztor, or (as
in prob.7page 6) rationalizing anumerator is
nslpful.

CONTINUITY: In this texi it is supposed that
we consider orly such furnglions as may represw
gent physiocal ~uantitiss. Phose are 2havaciow-
ized by graphs which are continuous smooth
surves, free from jumps, daps, Oor sharp corncers
at least in the part of thoir ranse under ocon-
sideration, Jome of thz stabem ntes made in this
texv about funotions and Lhoir rates:of change,
are too sweeping For furctiors whose graphs
possess peculiar faaturces.
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LIMITS: if expressions like a+e, ae, alpb+e),
(at+e)db=¢), "etc, occur, in which £ is to ap-
proach zero as a limit, the limit may be found
by inspection, by considering € to actually bde-
come zero in the given expression, FROVIDAD so
doing does not lsad to a zero-denominator. iinen

the effect of putting e, or an increusnt, Ax, or.

other quantity equal to zero 1is to maks a de-
nominator vanish, special przcautions must de
taksn, as reducing to lowest tsrms, ste.

In the Calculus we are not concerned wiltl any
fractions whose denominators aciually becoue
zero, but continually uith fractions whose lim-
its are souwht when the denominalors approach
zeroe

Hote the definitions:

ARGUMENT: o varisole taocudabt of as controllins
the value of another varieble.

FUNCTION: a quantity whose vazlus is - controllag
oy another.

INCREMENTS:, corrssponding chanses in the valucs

of interdepesndent variazblss,

DIFFERENCE QUOTIANT: quotisnt of corresponding

incrsments, It measures the AVERAGE RATE of

increase of one variable per unit increase in
the other,

DERIVATIVE: limit of a difference quotisnt when
toe increasnts approach zero as a limit. It
measures the FEXACT RATE of increase of one
variable per unit increase in the others

INFINITESIMAL: a variadble approaching zero as a
limit.

S
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PROBLEMS

In the following cases find f'(t), taking the
steps indicated at the top of page 122, This is
called * finding the derivative by the FULL PRO-
CESS. ¥

1. f(t) = 2¢2 -~ 3 ' (t) = 4t
2. £(t) =t - ¢ £'(t) = 3t2-1
3. £(x) = vx (See 7, pase 8) f'(x) = 1/(2vx)
4. F(x) = 1/x (3ee 1,page 4) CFR'(x) = <1/x?
5. p(x) = »/(1-x) ' (x) = 1/(1-x?)
6. F(x) = 4x* F'(x) = 24x®
7. G(x) = (1-x2)2 G'(x) = -4x(1-x?)

NOT& on DIVISION BY ZERO. Since division is
the inverse of nultiplication, the reason why 4
= 1243 is tnat 3x4 = 13, Tested in this way any
division by zero is found to be absurd. For if
me ask (¥hat?) = 1230, no answer can be justi-
fied, since we cannot have (quotient)x0 = 12,
such a product being always: zero. And if we ask
(What?) = 0+0, no ‘particular znswer is any bet-
ter than any otnsr since (any quotient)x0 = 0,
I'nus division by zero z2ither furnishes no pos-
gible quotient, or no particular quotient, and
so zero may not properly be used to divide by.

Very differsnt -is the case of division by an
infinitesimal, [he guotient in this case wmay ope
an infinite, another infinitesimel, or a finite
number according to what the dividend is. (3se
pages 15 and 18.)




DIFFERENIIALS

The prime added to a functional symbol msans
" that the derivative of the function with rs-
spsct to its own . argument has been taken, Thus
if y=f(x), £'(x) means LI¥IP{Ay/Ax}. If y also
depends on t, so that yip(t), 9¢'(t) means sim-
ilarly LIMIT[Ay/At)}. [hus ths speed of a fall-
ing body may be regarded as depending sither on
the time or the distance it has fallen, v=32t,
or v=8ys. In the symbol for ths derivativs, the
argument is: sometimss omittsd when no ambigulty
rasults, so that instead of f£'(x) and @'(t), f'
and ¢' are written, or sven y'.

Ambiguitiss .ars avoided in ths diffsrential
notation, The use of 1ifferentials also facili-
tates the process of obtaining derivatives, and
snables us to replacs the PFULL FROCESS by a
scheme more easily amlisd to complicatet func-
tions.

To develop the idea of DIFFERENTIALS we must
temporarily introduce the idea of an INDEFEN-
DENT VARIABLE. If we are dealing with a droup
of interdepsndent vatiables, =each of them is
controllsd by any other, as the spacs, spsed,
and time 1in the problem of the falling body —
or the two legs, area, and perimeter of a risht
triangle with a constant hypothenuss. e may
add to this group of variables a variable which
we will represent by the letter "g", about
which we make no assumption  except- that it
shall be so interdependent with the othsrs in
the group that it may be regarded as varying
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independsntly and controlling ths rest. It may
bs always equal to ons of the variables alresady
present in the group. )
‘rqe increment of this variable shall be treat-
2d in a spscial wanner in this respsct:
Ihe increment of ths independent variable, q,
shall be denoted by "dg" (instead of by "Ag")
ahenever it is infinitesimal, '

lncremsnts of ths obthsr variavles may be sx-
pressed (as 1n the Full Frocess for dsrivatives)
in terms of dq, 2nd dq being infinitesimal,
will waxe all ths other increments infinitesi-
mal too, These other infinitesimals have often
yery couwplicated forws, =even in cass of such
simple functions as thoss on page 13, It ss
possible to replace them by simpler quantsiies
and still get the same results in important ap-
plications involving limits. I'hese simplsr
ouantitiss are callsd differentials. Bsfore de-
fining them morse accurately it is nscessary to
consider soms further facts sbout infinitssi-
pals. (32e definition on pade 1Z)

Def. 4 term, or sum of tsrms, whoss only in-
finitesimal factor is dg will be callsd ap "in-
finitesimal of the first order.” If the only
infinitasimal factor is (dq)?, (always aritten
dg?, without tne parsnthesis] it is called @an
"infinitesimal of tne sa2cond ordar.," stc,

When any ipfinitesimal is divided by a power
of dq, all terms of lowsr ordsr become infin-
ites, all tsrms of the sawms order, oscoms non-

anishing finites, and all tsrms gf'hlgh?r.or-
der remain infinitssinals. fhus if w~e divide
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the quantity
5+x + 2x2dq - v/x dg? + 3(%+1)dq®
by dq? we obtain

Brx . 222 _ 8+ 3(x+1)dg

dg? dg
of which the first two are infinites, the third
finite, and the last infinitesimal. Hence the
first two terms at the top of the page were of
lower order than second, the next was of second
order and the last was of higher order,

Tnis method of testing by division is neces=-
sary wnen dq does not appear as an explicit ‘
factor, as in case of the three notable expres—
STORS: in dq, i-cos(dq), dg-sin(dq)
which are respectively of the first, second,
and third orders, as may oe shown as follows:

sin(dq)/dq is a finite quantity since it ap-
preaches 1 as a limit,-— the anzle in radian
measure and. the sine being more and more nearly
equal the smaller the andle,

(1-cos dq)/dq? is a finite quantity since the
half-angle formula transforms it to

é{sin %dg]z
‘| 5-dq
the limit of which is %.

Using the formula sin 8A = 3 sin A - 4 sin®A,

the third may be worked out indirectly. fron
tnis formula we get the identity: . 3
dg -~ sin dg 3 dg - sin 3dgq _ 3[31n dq]
dq® = (8dq)°® 3] dq

If we let ¥“LM represent the limit of the First
fraction, it will also represent the limit of
the middle fraction, and on taking limits we
dot the equation ' ’

L = 9L - 4/3




17

and since this dives L = 1/8, the first frac-
tion is a finite guantity.

Ne now lay down thess definitions:,

The differential, dg, of the INDEPENDENT vari-
able, g, is an infinitesimal increment added to
it. \

I'he differential of a DEPENDENT variable, as
y, is that part of the infinitesimal Ay that is
of the same order as dg. It is denoted oy "dy".

When Aq &s infinitesimal it is the same ag dq
but when y _is_ infinitesimal it may differ
from dy by infinitesimals of hidher order.

o find tne first order term of Ay, divide Ay
by dg and take the lipit of the quotient as the
infinitesimal dq approaches zero es a limit. In
this process all teras of higher order disap-
pear, leaving only what was the coefficient of
dq in the first order term of the increment Ay.

We have then

dy = [Lim Ay/dqldq, dx=[Lim Ax/dqldq, etc..
Three important deductions from these are:

1.Lim Ag/Aq 2.Lim Ag/Ax 3.Lim Ay/Ax

1 Ay/4d
= dy/dg =LIM 5, /dq =LIH pr/da
1 _ LIM Ay/dq
* LI¥ Ax/dq ® LIM Ax/dq
1 _ dy/dq
* (dx/dq) = dx/dg
= dg/dx = dy/dx

Hence the limit of a difference guotient is tne
quotient of the corresponding differentials
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whether the independent variable is involved in
the denominator, in the numerator, or not at
all Accordindly the distinction betwszen depen~-
dent and iniependsot variable which was made in
the case of incremsnts (page 17) may be droppsd
entirely when dealing yith diffsrentials, as
¥ilI usually b= the case hercafter. WNe may now
make this Z=ensral statsment:,

The Llimit of the difference quotient of any
two interdependent variables is the gquotient of
their differentials. In symbols:

Y
L‘Zm%t Au = dv

Note that the differentials are not the limits
of the inorements, byt their ratio is the limit
of the ratio of‘tﬁe inorements. The limits of
cach inorement is zero..

To find tha diffsrantizl of a function, y=f(x):
I'he function may 22 raprasentsd in sithsr way—

1. 4nalytically. Form the diffsrancs quotisnt
apd taks ths limit as in ths PFull Frocsss (ss=
pagz 13) of finding the derivativs, Whsn the
derivativs has bzer found wmultiply it by tons
4iffersntial of ths argumsnt.

for dy/dx = LIN[Ay/Ax] = £'(x) so dy=f'(x)dx
Phus if y = 3x%,
Ay/ax = [3(x+Ax)2 - 3x2)1/Ax = 6z + 3-AX

Paking limits, dy/dx = 6%, anl so dy = 8x-4x.

2. By a ladls Divide thns tabular iitffersncs
by ths intzrval aA-vonn argumspts  and multiply

th: rasult oy vbe diffsvsptial of the arsumsnt,

This will be corrsct to as many SISNIFICARNT
FISCURES as the successive tabular differsnces
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asree in,
kere, as in IN'ERFOLALION, we assums that for
changes in thz ardumsnt less than the interval
of ths tadble the rate of zhange of tnz function
is constant t0 as many significant figurss as
appsar constant in the suceessivs tadbular dif-
farsncss. Fhksncs

. , tabular differsnce
LIV Ay/Ax = Ay/Ax = — Lnterval

awd since this limit is dy/dx ws can gst dy by

wulbtiplying tuns abovs frastion by dx, the 4if-

f2rential of the argument
lbus from this tabls:

X= Jlodsex=lab,Dif.
1.0001}.00000

we dgat .00043
Ayo 00043+ - i 1.001).00048 |
A .OO1 B 1.002| .00087

(.43+)dx

i

and fipnally dy (=d lo310x%)

3, 3raphiczily. Draw ths curve y=f(x) and
measure risz and run of a7pie:e of the tangent

ab Lhs point conssrned. st 3LOrS of this
tangant (=risz/run) and mululply this result by
ax.
for Ay/Ax is bhe slops ¢f 2 1
s2cant Lo 2 naishhoring ocin:
cp  thz curva, ol whnzn Ax bdg- i
soxas  ianfinitessircal thz sz22- e v
ond poir: zpproazchzs bths first e
and tnz slops of ths secant approachss. that of
Ehs tapgasn bspse Liv[Ay/ax] = slope of ths
tangent, ond sircs this Lircit is dy/dx, we can
get dy by multiplying (slopz of tangznt) by dx.
Thus to find dy when x=3 and
y=/25=x2: the draph is a circls
«nd thz zlops of tpe tansant at
(4,2) 1s =3/4. 30 dy = =i3/4 dx. —
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Of what order are these infinitesimals:

(1 + dg)? -1 2. dgldg ~ sin dq]
3(1 - dg)2 - 2(1 - dg)® - 1.
Abat is the limit of 2Y + Av 4 Ay AV +(Av)?
Ay Bw Aw
If y = 3x® find dy analytically.
. Pind dy graphically for y=/2-x® when x = -1.

. Using tables of sq. roots find dvx when x=9,

A = a variable area, always sqguare, [7
ntrolled by the side x. Show that dAj§
area of the two shaded strips.

. V=9 (r)= volume of sphere, radius r: Find dV.
10. Find dy when x=.38 and y=loggwx.
1l. P and Q are points of curve y=F(x),
PT a tangent, PR horizontal, and QIR
vaertical. Show tnat when PR=dx, RI=dy.
12. Find d(1/x) when x=5. Use reciprocal table.

13. S= f£(n)= area of a cross section of YE‘__ Q'
2 3iven cone (note dimensions).The sec— .
tion is parallel to the base and at a «— =%
distance h (variable) from the vertex. Find dS.

14. If A= the shaded AREA swept over by the or-
dinate of a point P moving along a
curve y=f(x), show that if AB=dx,
then AA differs from dA by the 3-
cornered piece, PQR.
15. Find dy sraphically if y = v/10x-x® and x=1..
16. Of what order is the difference detween the
two areas:.—

a! the ring between two concentric circles
whose radii differ by dq.

b: a rectangle as long as the inner c1rcumfyr—
ence of the ring and of width. dg.

NoJ “G(D\TO)CH > W

1
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DIFFERENIIAL PORMULAS

In the following formulas the letter ¢ denotes
a CONSTANT, all other lettcrs being VARTIBLES.
These six formulas and their four special cases
will be referred to by the names indicated.

1. Constant ile] = 0

2. Sum ilutv] = du + dv

3. Constant factor dlecv] = c+dv

4, Fower d[3¢] = c-5¢-1.43
4', Reciprocal 4{1/B] = - d43/32
4", Square root dA[vB] = ik/{%-vE]

5. Product 4[#*8] = #+dS + 3+dF
5%, Fraction d[ g ] = iA;QBE_QQ;ﬁ

6, Sine dl{sin 8] = cos §-4§
g'. Cosine Af{cos 8] = = sin 9446

To prove the six main formulas, the FULL ERO-
CESS for finding a derivative (see page 12) is
employed., The derivative is then written in the
differential form and solved for the reguired
-differential, [he steps in detail are:

A. Independent variable, g, beccomeg gq+dq. ’
B. Correcsponding inorgments are added "to each

variable in the function, :
. Increment of the function fourd by subbtract-

C
~ing diven function from audmented function.

D. Difference guotient found by dividind by dg.

E, Difference gquotient PRANSFORMED so fThatl the
limit mesy be found by ingpecition. X

P, Passing to LIMITS, covery difference quotient
beocomes a quotlient of differentials, an
the extpra increments disappear.

3, Multiply by dq.
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In this process, the sisp requiring ingenuity
wpn - apd  the student should take cars to
learn saveral devicss employzd for this.

is

EROOFS

1. I'ne valus of a constant is not -affscted by
change in g, hencs 4,8,C 3ive merely Ac=D. D,
sive Ac/dq = 2. F Zives de/dq = 0. 3, dec = O.

= o

2. 4,3,%, give A(utv) = AutAv. D,E, A(u+v)/dq
Au/dg + Av/dq. F, 4(u+v) = dufdq + dv/dq. And
, diuty) = du + dv,

To apply this formula, write the differential

of each terwm in a sum and add the resulis.

3, 4,3,C give A(ev) = ctbv. D,E, A(ev)/dq =
s (Av/dq). P, d(ev)/dg = c(dv/dqg). 3, d(ev)=crdv

To apply this formula, write the differential
of the variable factor and multiply the result
by the constant factor.

N
3

)

n

4, ln getting 4 8%, we first consider only
positive whole number sxponsats sO that ws can
sat a complsts sxpansion of (B+A3)° by the 3i-
nomial thsorsm, )

4,3 give (B+AB)S = 8%+ 2°8°~1AB +[(c-1)terms
involvins higher powers of 43, froo AB2 to A3°]
C gives A[3%) = 2+ 5% 1: A3 + [terws in AB?]
D,E-gives A[B?1/dq = 2'8°71(aB/4q) +[all in 48]
E d[B:]/dq eBc"l(dB/ﬂ.q) + Z2ero
R 103°] 23t Loy
Ibis formuia 21so holds whsn ¢ is not a posi=
tive whols numdbsr, for exampls: when ¢ is zsro
a fraction, or a negative numbsr., ‘It nold;
whatever constant the sxponsnt may he,

l4

[ I
G Q0

[ el

0=0: The formula holds becauze 3°=1 and by #1




4{1) = 0, whioh QQf37s with #4 sinse 2.3°%~1_ 33
is in this 3382 0.11/2).U3 wshish is zero

o=a/b: Put y = 33/P 414 then y2 = 82, and by
#4 we have be1 a=1

boy -dy 2. 3 . d3
= dy (a/b).B?‘;-yl“b)da

(a/6).3'2/P = 1) 43

g=-mt Put y B"'mi and then y.3%=1 and by #5
(below) dy.B™ + m3™~*48. y=0, and then:

dy = — ma®=133,3=% = _g, g¥0-lz4g

whon d(323/P)

Wouou

In applying this. formula it is best to set
down the three factors in this order: given ex-
ponent, BASE with old exponent minus one, dif-
. ferential of base.

The differential of base must not be omitted!

4'. a(1/B) = a(871) = -1.87%.45 = - a8/B?
4", a(/B) = a8Y2) = 1/2.8(%4-1) 43 =a3/2/3

5. 4,B,C give A(F-3S) = (F+AF)(5+43) - FS

= F-AS + 3°AF + AF-AS
F-A3/dq + 3-AR/dq + AF-A3/dg
F, d(F:S)/dq = F+d43/dg + $-df/dg + 0 .d3/dq
G, a(F-3) F-45  + 3-4¥ .

To apply this formula, write the two variable
factors with a good gap between, multiply each
by the differential of the other, and add these
two products.

Note that this formula produces two terams
from one, in which it differs from the others.

1]

]

D,E, A(F-3)/dg

TN

a(¥-0~1) and by-#4' and #5,

. + aN
N-da(1/D) + (1/D) AND — 4D-N

N+(-dD/ #) + dN/D = —————

37, a(n/p)




. A,B,C give Alsin 9] = sin(8+A8) - sin(3)
(transforming, oefore dividing by dgq) gives
tlsin 9) = sin({9+409}+3A3)-sin({8+5A3}~5A0)
2 cos(9+56)°sin(309)

cos(6+3A3) sin(403)/3%

cos (3+849)- sin(200) 40

8

It
by

W

D. Asin B

dg 5A8 dg
P, dlsin 8]/dq = cos & * 1 * d0/dq
G, dlsin 0] = cos 9 dd ,

d cos(90°-9) -
sin(F - 8).a(5 - @)

3'., dl{cos o)

[/ ]

Note: Fformulas 8 and 8' hold only when A8 and
d9 are meoasured in RADIANS. For then only can
we say that the limit of sin(%,48)+¥%,A0 is one.

If A9 1is mneasured in degrees this limit is
/130 or .0l174+, and the formulas will thsn be

i = R = —ginge -
d sin cosH 150 d cos & sind T80

Because of the inconvenience of the multiplier .
/130, we avoid using dedrse measure in connec—

tion with differentiation. Throughout this bock

(25 in other books on the Calculus) it is to be
understood that when no units are indicated
ansles are measured in radians.

To apply 6 and 6', write the co-function, and
multiply it by the differential of the angle,
and prefix a minus sign if differentiating a
cosine. Jote that cosine LAKCREASES in Quad. [.
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1. From 5 get a formula for d(uvw) taking it as
(uv)w at first.

2. From 5' get a formula for d{c/x) and check
by getting the same from 3 and 4'.

3. Do the same for d{x/c), and check by 3.

. From 4 get a formula for d(1/vVx)

. From 5',8, 8' set a formula for dltan 3].

. Prove 4' by the Full Process, not using 4.
. Prove 4" by the Full Process, not using 4.

8. Work out d[B™P] by treating it as d{{;}m] an
- assuming the formula d{1/B] = - dB/32,

9. Get 8' by using 4 and 8 on sin®3+cos®=1.
10. Get 8' by using 4 on cosd = (1—sin39)’;
Using formulas 1 ...8', get differentials of:

oy U1 >

3
a.

11. 2x?2 17. /x+1 23. 4+x?2 29, sin 3x

12. 3xy 18. x%+y% 24. 2x{(y+1) 30. cos(x/2)

13. (2x+1)® 19. /x*ty 25, sin?x 31. x*sin x

14, X*1 20. 3 '26. % 32, sin x
y X _ . . X

15. x3 21. xv/x 27. VYcos ¥ 33. x*cos x

18. x-cosd 22 Y-sinY 28.(1+x2)% 34. (1-x)?2

Differentiate these equations as they stand
and solve for dy/dx in esach case

35. x2+y2=25 (-x/y) 38. y2=4x 2/y)
36. xy =1 (-y/x) 39. 2x-3y=4 (2/3)
37. x2+y 40. sin y = x

= (Z il: 1
dx ( dx y) dx (;l—xa)
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shrinks down upon. Hence dy/dx, ths
Ay/Ax, gives the sxact or instantaneous
incrsase in y per unit increass in x.

Frequsntly cozeurring casss of this typs of
relation ars illust-iated in ths provlsms on ths
next few pagss, Observs thatl

If x ecm.=distancs movad in t ssc., dx/db fsst
per sec.= speed at thz and of t seconds.

If y cm.= ordinats for point whoss absasissa =
x om,, dy/dx ¢ives slopz of curvs at (x,y). '

If Vv ga2l., = outflcy wup to thns znd cf o nours
d¥/4n sal.psr hr. = zsurrsnt ab spd of o hours,

If ¥ ft.lps, = work dons up to zni ol & zin.,
d%/3dm ft.lbs./oin. = powsr ab =pd of = vinutes,

If v £ft,/ssz.=350224 sainsd up to snd of & s2s
dv/dtsaccaleration at 2nd of t ssconis.

Phe actual incrzase of a quantity in a given
interval is found by subiraztiorn: = later valuz
minus former value,

The avarage rats of increass of a quantity
per unit increass  in sons seCOnd guantity 1s
found by dividing the incrzass in the first
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by Ghe increase in the second,

The instantaneous rate of increase of a quan—
tity per unit increass in some second quancity
is found oy dividing the differential of the
first by the differential of the second.

In the case of a decreasing quantity, the in=-
crease, and tne average and instantaneous rates
will all be negqativse,

PROBLEMS,
1. A frecly falling body falls 16t2 feet in t
secends, ¥ind oy division ils average speed
during this time (t ssc,) and by differentia—
tion its zxact speed at the end of this time,
16t, 32t fi.ver sec.

2. The curve y=1+x® risss fror y=1 to y=2 as x
runs from x=0 to x=1, Fina the avarade rise pzr
anit of run, =nd the exact siops at the two zm
points. 1, 0, 3
5. The numoer of gallons fed idnto a reserveir
at tha end of ihe y hour beins Jiven zoproxi-
mately by the formula
vV = 50,000 y - 4,00C vy

£ind the averade amount fsd in during ths first
ten hours, and the rate of fiow at thes end of
the fiftn hour 48735, 48,1v6 3als, per hr
4. As the tide rises a barg:s wsizhing 5,000 lbs
is. ¢radually raised, its neignt =200ve lov water
level being in feeb £ = 15(1-cosisn), n being
the number of hours since the tide turnad to
riss, and 0b/Z a numoer of radians in tnz angle
whose cosine is involved in the formvla., Find
the numosr of fi, los, of work done by Lhe tide
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in Lifting bthis oarge in the first 3 hrs.,, in
the tirst & nrs. in tpe first b nrs, and the
possr expended in Lifting it at the and of the
rirst three apnd the first six hours,
89800, 149000, 7500)(1-coskh} ft. ibs
237400, 5220 fi.los.per sec
5., 4 point wmoves along a wir2 80 bhat iis dis-—
tance from tne startians poimt, x cmy, 1s given
in terus of the time elapsed, t sec., 0y tne
formula X = 33 - 2t
Obtain oy aifferentiation feormulas <for its
spesd and acceleration. fina the distance movead
and bthe spsed Fained oetmeen t=1 and =2, and
the acgeleration at Lhege instantis, 19 ft,
27 fi./sec., 18, 36 ft.per sec.per sec.

Co tind by sirferentiacion Lhe sloovs of a curve
grein 3, wsbers 9 is laid off on wns X 2xis o ~
scalz of radians, at the points whers 9=0, o=
e, o=m/d 1, Wvsr¥,
7. #ipa  Lne accesleration rorwufa for a oody
that starts frox rest anay in o ssconts Jfains a
spsea of tl8 + &/(u/5) + 3478] fi. per sec,

3., & recording Jas meter on a chenical oven re-
-eav2nts bhe amount of a3 used, 4 cu. ft., atb
b winutes past ten 4.8, in bthe forw of a curve
anisne eguabion is aporoximately
3 = 10 cos(u/10) + t sin(e/10).

how many cu, ft. per win., are oeing ussd at
iC.Co, at 10.10, and now mucio altedethar in itne
(ims oetwzéen bhese instants? hobe that L is 2
autioer of minutes but t/10 is an apngls exprsss-—
ed in radians. ,439, .042 cu. ft./win.,  2.86 (%}

4. iz arount of work done oy tus steam ovack of
a pisten 1is ¢given in fu, los, for ine firsi x




29

seconds of the stroke is givsn approximately oy

vne formula y - 2200(8/%F1 - 1.

How much work is done in bthe first tenth ol a

second? %hat is the average power during chis

time? what 1is the power al the beginning and

end of this time? 42.46 fi,los.
424.6, 44Q,0, 407.68 ft.lbs.per sec.

10.lhe distance of a pendulum from its central
position is given in inches by the formula
2:-sin(6t)
whera b measures the number of secomds elapsed.
How far does ths ‘pendulum move in the first /5
of a second? waith what average speed does it
move? +bal are the instantaneous speeds at the
osginning, middle, ana end of this /0 sec.?
1.862 in. 9.31, 12.00, 9.90, 4.37 in/sec

11, The speed of the psndulum in g9 above is
1z cog(8%) in./sec, Why? Find Sthe whole loss of
speed during the first 1/5 sec. and the instan—
taneous rates at which speed 1is being lost
(accelerations) at the beginning and end of the
tice in question. 7.63 in/sec, 0, 87.08 in/sec?
14. Suppose this formula ewodbodies the Linpetable
of a transconiinental train, m osing the numder
of miles travelled in the first h hours,
m = 30 h + ,00153(h-10)%.

find the distance travelled in 24 hours, the
average speed, the speed at tone start (0=0), at
the end of 12 ars., and at the end of 24 brs.

777.6 miles, 32.40, 24.00, 30.05, 46.46 mifor
13, 7ind the slope of the curve y = x°sin x &%
tre points wbers x=0, x=x/2, x=a. 0, +1, -3%.
Prove: acceleration = constant when distance is
14. = ik (Lime )%, 15. = k' {spead)?.




TECHNIGUE OF DIFFERENTIATION

MEMORIZE thoroly the formuias on pade 21.Take
no step that cannot be justified by one of them.

RESULTS should always be sigplified, and sx—
pressed in a form similar to the given foru so
far as possible.

FRACPIONS, N/D, in which either N or D is a
constant should os trsated oy the Conmstant Fac—
tor rule, 3. Irsat v/c as (1/c)v, c/v &s c'v™

If N and D ars sums, (as in examples 2 and 31
following) uss the Fraction Rule, 5'.

If either N or D is a powsr or root ¢hange to
the product form and use 5, factoring a8 cox-
plained below, and changing back to the frac-
tional form.

PRODUCTS should usually be difrerontiated by
the Product Ruls, 9, rather than by multiply-
ing out and diftsrsntiating by the Sum Rule.
‘Ppg}resulp can be more easily factored if ths
ditferentiation is done by the Product Rule.

If one or both factors are powers or roots,
the result is always most easily simplified by
factorgng out tanz NEW POWERS. Thus

X ]

a = dlx® (1+x)" 7%
v1+x

1 __3/ 2 - 1/
= x3{-¥,(1+x) "*ldx + (1+x) '?3x2%dx
(I'ne new powers are the (1+x) 72 and x?)

~ _ _xfdx _ x2([8+3x]dx
Ten) % [-x/2 + 3(1+x)] = ST
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The factor in the square bracksts will always
contain ths FIRST powers, since a "new" powsr,
obtained by differsntiation, is always ONE LTSS
than the "old" one, which appears in the other
term.

FQUATIONS which involve two or more variables
may oe differentiated term by term, and then
solved for the required differential. Thus

x®y=1 gives 2x-dx 'y + x2-dy = 0, whence

dy = -2xy dx/x? = -3y dx/x
= —Rx*y dx/x® = -2 dx/x?

DRILL

In these examples a,b,c,n reoresent constants
and all other letters reprosent verigbles., Hee
call that f!'(x) means dj(x)/ax, Ft{y) means
d#(y)ley, ete, (page 20). Find the Aiffereniial
or dersvative indicated.

1. y = x/I%x dy = (3x+2)dx/2v/I+x
2.y=%§§. %{t (21)](-)!

— J =
3.0 = 3k il T
4. y = sinb-cosd dy = (cos?9~sin®3)d6
5. y = (x*+1)/3 dy/dx = 2x/3
8. f(x) = x/(1+x) £1(x) = /(1+x)?
7. P(x) = x/sin x Plx) = 830 figif*gps %S
8, 2 = ax2+2bx+tc dgz = 2(ax+b)3x
9. y = sin®3x dy = 8sin3x-cos3x dx
10. y = cos®3x dy = -3 sin(8x)dx

11. £(x) = 3/(1-x2) £V (x) = 8x/(1~x%2)2
12. y = (322+x)? dy/dx=2(8z2+x)(6zg§— + 1)

i
it
gt
il
il
I3
I
i
+




12. y = vI+x¢% dy = x dx//1+x%
id. r = 1/(x9+y2\ dr/dt = ~2(x§%+y§g;/2xa+yz)z
15. t = sin®g/cosd dt = sin9(2+tan26)d6
16. £(8) = (l-cos€)?2 f'(8) = 25in6(1l-cos8)de
17. y = /I=x® dy= -—%x‘*(1—-11:")"'1/e 2%
18. ¥ = x(x®+5)% ay = 5(x3+1)-9x5%5
a
19. ¥ = x/vVI¥z% iy = dx/(1+x2) 72 ,
20. 9(x) = x + SQ¥ X oi(x) = — cot®x
in x . \
2l. y = sin‘&§é3 iy = sin x-ax
22, y = (a+x)®(a-x)? dy = - 4x(a®x®)dx
24, @ = x - sin(x)cos(x) d@ = 2sin®x dx
P -y = I..u j‘l>v~»=- 1+
25. & = sin®Y—cos?Y a7 = 2sin2Y.dY
28. y = WX dy = y dx/nx
27. x%+2a2xyty® = b ':y/dx £ - %%
28. f(x) =2 x + /T+z% +t'(x) = f(x) + v1+x¥
- l=cogb dy - 1-cosb '
2. ¥ = S8 46 = “sinf6
30, z = _C0s& dz = =1 ___
30. = Izsine d8 1+siné
= X =X+2 1+2x-x2
- T b———— d = -4
SR A - V= o
. 92 x 1%XK 4y = - -
32, y %:;(- | H = 1+{(1-x)VI _x!i
33, y¥(1+x®) =(i-x)2 dy = =(1+x)/(1+x2) 7>
34. r? = g2 a yz' d{%} = - é}’; - X df :ﬁy ay
35. sin B = cos ¢ a8 xyi do
36. v = 2/(1+x®) dy/dx = —4x/(1+x2)2

37,

y = sin(n-x)

dy/dt = cos x-dx/dt




= (a+x)/a—x
e, x* 4yt =1
4G, .)/A'*/V:&/C
41. f(x) = ——:%
7
2. y }X:Q—
43, y‘—‘\/E(XS
44, x¥/y® = 1
5 2x2 %
as. y = H-i

ly/dx =

dy/dx
dy/dx

i:!
dy
dz
dy

dy
dx

(%)

=

(3a-x)/2v/a—=x
—(z/y)?
S

Zn. "2
- (x“—1)2
——r WX
X2 y/x2=c? gz
£1(x)dx/2y
2 dx / [3°8/%)
~2x2 % 4% + ]
(1-x)2

I

L

t

Iifferentiate each of the foullowing:

46, x2(1+x)*

47. 1 / cos X

4%, (sin x)/x

49, (x+2)/(2x+1)
50. (x2-1)vx%+1

61. (1-sin x)/cos x
52. x2(1+x)/(1-x)
53, v{x=2) (x-0)
54, x%+¢in x

56. (1-x)2(1-x%)

56.
57.
58.
58.
0.
61.
62.
83.

cos X + sin X
(1=-sin x)?
1/(2x-3)*%
(x2+x)/(%2=1)
{(sin x)/x?%
(x+1)*cos x
(2x+Z3}/(1=x)

3in®x

4, 2*sin 8°cos 6

Y sin x
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CURVES

A derivative of a function is itself a func-
yion of the sams argumsnt and may itsslf be
differsntiated, yislding 2 "second derivative”,
These abbreviations are esmoloyed for indicating
nigher derivatives: if y = £(x),

dy/dx = £'(x) |
dldy/dx1/dx = d2?y/dx? = dlf'(x)}1/dx = " (x)
dald2y/dx21/dx = d%y/dx® = dle"(x)1/dx = " (x)
ete.

when the notation £'(x), f"(x), stc., is ussd
a0d the "x" is replzced by some other arsument,
tne symool means
“first differentiats, thsn substitute.”
Thus, 1if y=f(x)=zx*
dy/dx=f'(x)= 4x® and £'(2)
d2y/dx?=f"(x)= 12x? and £"(2)

3
2

oo

32.
48,

i H

4+
12-

Hou

Do

To find ths SLOPH of a curve, y=f{(x), find
f'{x) by differentiation, and substitute for x
the value of x at toz point in question.

For f'(x)z dy/dx sLI# Ay/Ax, and as
Ay/Ax is the slope of a secant, PQ,
its limit, dy/dx, is the slops of

ETRA
LE ., the tandgsnt. (see pages 9, and 19.)

In PLOITING a curve it is a grzat help to in-
dicats on the diagram the slope of the curve at
all easily plotted points.

Thus y=x(x-1) crosses the x axis
at x=0 and x=1. dy/dx or f'(x) is 1
2x-1. Substituting x=0 we gst -1 =~ W /
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= slope so the curve runs 45° down to tns rignt
at the origin: from x=1 we get +1=slope, so ths
curve runs 45° up to the 'right at (1,0).

From the SECOND DERIVATIVE, f"(x), we can
also get help in plotting the curve y= f(x) For
f"(x), being dlf? (x)]/dx, is dlslope]/ix and so
its SIGH te 1ls whether the slope is

INCREASING or DECREASING
Note that where ths curve is
o BOWL—shaped“Mﬁ; : DOME-~snapad

SR ,,»4 .

- e . -

-8 M:E > +.2 : i ’eﬁfro:wﬂ-o.,,l* -3

: .~} . o,
slops 1s increasing slope 1is dscreasind
£"(x) is PLUS : £"(x) is 2INUS"

Symool: \*/ : Symool: /7M\

In case  F"(x) is ZRR0 at any point, take two
points a little to gither side, Thare are f
sases: +O+,+O—,~O+ s NON Points at which PV S
chandes 3idn it passes un"oafn 2300 are

salled L&ﬁLHCTIONb. ‘’he btwo casss  +0+ and ~0-
pres~nt no visible sindularity.

Phus X S_x+1 Qchq (O 1) oa zsurve.
3 =3x2%-1 O)==1
f!l" X ox f‘" O O

put F"(0=) is miaus, 7"(O+) is las,

x0 the zurvs must bo 10ﬂe~3nao to
5ha left and bowl-shaps to theo r;éht.

In plotting a curvs it is especially import-
ant to note on the diagram all points where f,
f', or " ars zero. The curve caun then often be

, irawn in at onces. Thus y = x®-3x?
I - f(x) x2(x-3), y=O at x=0 and x=3.
‘ f£! (x)=3x(x—2) lavels at x=0, x=3,.
} &) f"(x)=8(x-1), changs at x=1 from

-

done to powl shape.
I'he values of y are then found for all thsse
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valuss of x, and the information rapresented on
tne diadram in the manner shown. FPhe curve may
thsn be drawn in ecasily, preferably witn 1ink
or pencil of a differsnt color.

JURVES
Find and plot the points at whiekh f(xl=o, f'(x)
=0, and f¥(x)xo., Indicate the slope at each of
these points, and the shape (dowl or dome) in
the vertical strips belucen Lhem.

1. y=(x2-3)% 7. y=x3/2 13. y=x°
2. y=4x(r2+3) 3, y=x*-32x 14. y=x°
3. y=x3 3x* 9. y=x*-x?2+1 15 y2=x8 :
4, y= =(2=x)% 10, y=x3-~4x 18. y=6x5+15x?
5. y= sin x 11. y=l-cos x 17. y=cos?x
8. y=/x’f1 12, y=sin®x 13. y=x®-1

18, y=x3-dx-%, (x*-1) 21. y=(x+2)2(x-1)

20. y=(x-1.%(x+2) e. y=(x+1)(x~1)

DIAGRAMS ars of very great utility in svudy—
ing tus rslation bstwsen interdependsnt cguan-
tities. In tns case of a pair of geometrically
related quantities one figurs may show the ac-—
tual space-relation between thsu: from such a
fizure w2 way conslruct 2 foramula for ths func=-
tional relation between the quantitiss: then
From this formula a 3R4PH wmay be drawn which
#3113 show ths rslation Doetwesn the two quanti-
ties directly. #For example, consider the case
of tne right triandle considered on padss 2 and

which nad its nycotnznuse constantly = 5 cw

=
oy
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and whosa ARWA was considsred as a funetion ot
its oAS#4. In tnis case we have the following:

Space=liagraem Formula y Graph
~
* - H
/
%/mEA « y = %J\/25-x2 1%
i
© = BASE en T en s

Tnz use of the slope formula is a grsat help in
qrawing the sraph. In the above case the slops

tormala 35 4 /ax = (35-2x8)/2/25-<F

and we find that when x=0 slope = 2%, when x
approaches 5 slopiinﬁgomes infinite; and when
slops is zero x=/12% = 3.53+

PROBLEMS
Lraw the space-diagram and construct a formuls
by which each of the following QUANTITIES is
exbressed as a fuaction of the CONITROL VARIABLE
indicated. Find by differentiation the rate at
which it increases der unit increass 11 the
control varsasble. Kepresent by a graph the va-
riation of the function for the range indicated.

1. The AR&A,f(x), of a circle controlled by its
DIANZTER, x, tns lattesr ranging from O to 2.

2. The VYOLUNE, V(a), a ccne similar to a
31V°n cone {(hsz 1:nt H, radlus of oase R) control-
l=d o asvariable altltudv, h, taruout a rands

tronm h G to h=s.

3. The AiuA, A(x), of a resctandle inscribad in
a circle of radius 5, controlled by the leansth,
x, of one side, ranging from x=0 to x=10.
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4. The DISTANCE bstween two ships which sfter
meeting sail away, one North 15 mi/hr, and the
other Bast 10 mi/hr. Control = number of HOURS
since meeting. Rande 3 hours.

5. VOLUME of cylinder inscribed in a sphere of
radius R, controlled by x, tne ALTITUDE of the
cylinder, with the whols possible rande, that
is from x=0 to x=2R.

6. Total AREA of a cone inscribsd in a sphere
of radius R, controlled by the RADIUS of the
base of the cone: range Y to R.

7. AREA of a rectungle inscrived in an equilat—
eral triangle, M units on a sids, controlled by
BASHE of the rectansls, varying from O to ¥,

g, DISTANCE betwsen two cars on perpendicualr
strests in tzrus of the ['IME since one crosssd
the othar's street, if the first is going ten
miles per nour and rea:=hed tne crossing ten min.
before the other, the latter going 15 niles per
hour. Rangs t = O to t = 2 nhrs.

9. The VOLUME of a rigiat eircular cone inseribed
in a sphere. Control variable 8 +$he ssmi anglie
at the vertex of the cone, ranging from O Le
/2 radians.

10. The COST, f(v), of driving a ship 50 milss
adainst a current of 4 wi/hr, if the cost per
hour 1is 2v®/3 dollars, v being the SFEED thru
tne water at wnich the ship .is driven and rang-
ing trom O to 8 mi/hr.

11. CAPACITY of a cylinder whoss curved area
plus one base is 30 square feet, controlled by
its RADIUS, with 2 renge of 1 to 3 feet.

12. Rectangular Axdd controllzi by the length
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on one SIDE, - the perimeter being constant and
represented by 4a. Rande as grsat as possiple.

13. LEHGTH of 2 line through (a,b) and termi-
nating in the axes, controlled by its X-INTEk—
CEPT, ranging irom x = a to x = o,

14..AREA of an isosclles triangle inscribed in
a circle of given radius, and controlled by the
LENGTEH of its 343¢, rapsing rrow zsve Lo tne
radius of the circle.

15. TIME required to row ashore and walk up the
pgach 1in terms of the DISFANCE walked, 1if the
boat starts 3 mi. from the shore and tne des-
tination is 4 mi. from the point on shore nsar—
est the boat. Ranse, O to 4mi. for dist.walked.
18. VOLUME of 2 cons with a given constant for
its slant height, controlled by the sewiangle
at the vertex, ranging over all possiole values




KXTRENSS, or MAXIMA AND MINIMA

inen a function tnat has been increasing be—
gins to decreases, tne value reached just as it
turns is called a maximum. In a different part
of tne vrange there may be values larger than
suct a maximum. Thus the function

f(x) = 2x% - 3x® + 12x = 3
aas £(1) = 2 as a maximum although
after decreasing to f(2) = 1, it
then rises to f%B) = 6§ and higher. i

Def. A value is called an Extreme (maximum or
pinimum) when it 1is grsater or less than the
values in the immsdiately contiguous part of
the rangs.

I'ne discussion ners wili de lirzited to func-
tions whose graphs are continuous and fres from
sharp corners or cusps. Un the curve represent—
ing suen a function the extremes will pbe at the
JOPS and BOIIOMS of the undulations. At these
points the curve will be LEVEL, 3LOFE = Z%R0.

I'he converse is not true.
At 2 *"terrace point® we have
3 zaro siope but no extreme.
Thus f(x) = 3x* - 3x® +6x has
a level at x=1 ginee f'(1) = 0,
but f(x) is increasing just bs-
fore and just after x=1.

roints at which the graph of fi(x) 1is level
ar> called CRITICAL PCINT3S. They nust b= locatsed
by solving tue squation f'(x) = O for x and
then tinding the corresponding valugss of F(x)
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py substituting the critical values into f( )
itself. These critical points must tnen be ex—
anined separately to sort out ths extremes and
to determine whether each is a maximun or a
minimum.

first method of TESTING extrewes. Calculate 2
value of f() on each side of the critical opoiat
as well as at tne critical point itself.

In chosing the two neighboring points it is
necessary only not to go beyond anotnsr critic—
al point. In fact the neighboring critizal
points bod=2thar with plus and wminus infinity
are often convanient wvalues to wuss in this
method of testing.

Thus in the case of t(x) = 3x* ~ 3x® +3x2?, on
pase 40, t'(x) = 12x® - 24x® + 13x = 12x(x~1)%
[hs squation 12x(x-1)%=0 gives x=0 and x=] as
the only critical points, whence £f(0)=C apd
£(1)=1 ars the only possible sxtremes.

to test t(0), take on one side f{(~1) = 17 or
pernaps f(-®)=+%, Un the othar side take the
other critical value F(1)=+1. It appears tnen
that £(2)=0 is 2 minimum.

Lo test £(1) taks £(C)=0, £(1)=1, £(2)=8, and
it appears that x=1 <$ivas no sxtreme sincs f(x)
continues Lo increase as x passes thra x=1.

EXERCISES.
Pind all eritical values for the following

inctigns, test each critical velue, arnd calcu-
ate the valus of each extrema.

1. y = 3+x® so max., rin y=3 when x=0
2. f{x)=lgx(#®-3) ((-1)=24 vax. f(+1)=-24 min.

ooF

3. f(x)=x*-2x2. £(0)=0 gex., f(x1)=-1 mnin.




x8-3x2-15x+z, -44.32 min.at 3.45% 14.40 asx.
5. F(x)zx*=8x3+18x2+2, £(0)=2,min;No max.f(3)=7

6.y = x + 1/x, Min=2 at x=1, Max=0 at x=-1
7. f(x)z(a-x)%/(a-28) 8. y=(x-1)(x-2)(x-3)
g. £(x) = x5~12x+7 10. f(x) = x2 + 2x + 0

When dzfdx appears in the value of f'(x) it

may be found frowm un wuxiliary equation & then
substituted into the equation J'(x)=o.

11. F(x)=x+z, xz=8, f($)=6 min., «<nsn x=z.
i2. t{x)=2x+3z, x%z=578., {(12)=38 wmin wusn z=4
iz. f(x)szz, x+z=12, t£(6)=38 wax,, when x=z
Cid. F(x)= gx, x%+z2=1, t(1//2)=1/2 wax.
15, T(x)=xy?, x2+y2=10 f(1)=2% pax.

When a concrete probler calls for the condi-
tions under which a "°rta1n gueantity will oe an
extreme, il is necsssary first to adopt a vari-
able whose value vaiiub\ that of the guantitly
whose extrese is sousht, und to 4et o foraula
for the lateer din terus cof tois sindle conisrol
variable, iben proceed as on pages 40 and 41.

A sbort cut is sowstiues possible if tus for—
muia for ths quarntity shose sxtirame i3 scous
contains a square root as a factor ¢ is uhs
reciprozal of scms siwpler quantity. Fer /T(x)
pas a maxilmuam {or tne same argument theb makss
f£(x) maxivun, while i+f(x) nas a neximor for an
argument vbat wikes f(x) itself a vinimum,

Fer exawple: To dind itnz srzatsst rozteoodle

-




-
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that can be inscribzd in a circle of radias, R,
Control the rectansle by x, the semi-~lensth of
one side. Thea the othsr side will
Se 2/3%—x%, =od the arsa is F(x)=
Ax/3Z2kT,  Rut E(x) will bave its
maximum for the same x that makes
its square,y(x) =18x%(R%-x*) max-
imum. Ths latter is easier (o
differsntiate. #e get ¢'(x) = 32R%x-384x°. Put-
ting this = 0 gives x=0 or x= xR/V2. Tns x=0
and the x= -=R/v2 have no meaning in the oroolem
and since f(O) and f(R) are both zesro ths valus
x= R/V2 amust give the maxinum. [lhe two sidss
are therefore 2R/v2 each, and the area iz 2R}2
Another short cut in such a proolem is tae
following: Let h and b repressnt the heidnt and
breadth of ths rectangle. Then we havs h2+p? =
(2R)2, from which we find db/dn = -h/b. I'he area
depends on h alone (or on b alone) but can ve
expressed mors simply in terms of both. Taks
areca = f(h) = on
differentiating and dividing by dio we nhave
£f'(h) = b + n(do/dn)
substitating the value of do/dh froc 2bove
£'(h) = b + h{-n'b) = (06%-b2)/h
Hence f'(h) = O givses h=b, which datermines the
naximum as defors.

Insre are THREE mstnods of TESTIHG tas naturse
of a function, f{(x), at a critical point:

1st. By the VALUES OF f(x) on eith3r sids of
the critical point. 3es gaiz 41 for this.

2nd. By the SIGNS OF f'(x) just before, at,
and after a critical point. If these are in or-




44

dar 2s shown in thz first column, the draph of
f£(x) runs as shown in the second columa, and so
the nature of voc function 1s as indicated in
tne third column below:

P'(x) Zrcaph runs f{x) has
+ 0 - up level down Maminum
- O F down level up Minimum
+ 0 ¢t ap level up No extromo
- D - dowe level down No extrems

Thus 1in tHe preceding problem it is svident
that o'{(x) = 32x(8%-2x?). changes from + to — as
it soes toru zero st x=R//2, and this "+,0,-"is
cnaractaristic of = maxiaun.

3rd. By tne 3IGH OF £"(x) at the critical
point. If the 2rapnh of f(x) is dome shaped,f" (x)
is minus 2and we nav2 a maximum, if bowl shape
t"(x) is plus ani ws nave a minimum.

Phus from the ¢!(x) avove, ¢"(x) = 84(R%-3x?)
anica 1is asgative (= —32K2) at the critical
point, which is characteristic of a wmaximum,

If T"(x) is zero at a critical point, test
tne fraph on eitnsr side.

PROBLEYS
1. Whzt numoer =xcesds 1its square by the great—
est amouat?
2. In making a box out of a square piece of tin
the cornsers are cut out and wasted. Using a

square of sneet tin 13"x18", how high shall the
pbox o¢ made to nave maximum capacity? 3"
5. If the radius of 2 sphere 1is 12 inches what
ig: tns neizht of a cone that can ve
turned doan from it with the leagt loss
of material? 18 inches

N
v’
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4, inat is the Jrzatest isoscelss triangle in-
geribable in a given circle? tquijateral

5. Find the dimensions of ths dreatest rectang-
le that can be inscribed in an equilat:zral tri-
an3sle 20 inches on a side. i0"xz, 88"
&, Divide 2 line into four parts so as ito zalke
tne rzctangle formed frou then as largs as pos-
siole, Four squal pacts
7. A man in a row ocav 1is btorse miles ifrow tne
nearest noint, 4, of a straight deach. He wsisn—
2gs to reach a point on the osach 5 ri, from 4.
Be can row 3 wi/hr-.and walk 4 mi/br. How shall
ne row? (See 48:18). =0 as Lo walk 1.¢3¢ .iles.
3, ¥What valus of x sill mmke
AR least, awd wtat will os
that shertest lenstn of ART
x=3,C, A3=18.8
g. that cylinder inscribel ia a jiver 3phere
nas the greatest volume? Radius = v/ (2/73

10. A helf ton weight. hangs 2 ft. frcx the ond
of an iron lever ani is to os

E—r‘"‘—'i’f raised by liftiry at 2. If She
lezvar weidhs 10 1bs/fL how

long 2 lover will make ths easiest life? 20 ft

11. A YNerman windew z2onsists of 2 rect—

angle surmounted oy 2 semicircle., c¢r a
givern perimster, 100", what window will
adwit .the most light? Radius=100"/(r+4)

12. A gas bholder 1is & cylinder closed at the
uvpper end ani open at the bottom whars it sinks
into water, nat nroportions give grzatest ca-
paczity for a ¢iven total surface? Rad,= heigh!
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ihe hourly fuel-cost on a liner varies' as
cube of her spsed, oeind $25 an hour for a
sneed of 10 mi/hr. All othsr sxpenses come to
£145 an hour, In what btime should stz plan to
pzke a 3000 mile trip most cheaply? 8%, days

14. What is the largest box with a sjuare base
railable in fingland where bthe redulations for-
bid the sum ¢f length and flrtn exceeding & fi°7

15, ¥%nat is the most capaclous cylindrical bsun-
die mailable in England? : 2 ft. long,.

186. A farmer wants two zqual rectangu—
lar hen yards, each to contain 800 sq.
ft. Ifaking advantage of an exisbing -
wall, what is the least cost of the
job at 4% cents a foot for fencing
put up? $5.40
17. I'be power given to an external circuit by’
dynamo with a generated EMF of 20 volts and in-
ternel resictance of 1.8 ohms when the currant
is I amperes dis {20 I - 1.8 I%?] watts.  With
what cureent can thls dynamo delivsr ths most
poHErT 5%, asgperas

13
th

(6-

_[-_-L_J_

18. At yhat point, B, shall a passenger .Jjurp
from his car, which geos 13 mi/br
that he may reach C 2s quickly as
ssible, walking 5 mi/hr? Jbserve
that we wish to make the tips for
walking BC as much less as possi-
ble than the tirc requirsd to ride
along B4 and then walk 4B, ¥Yaks AB = 100 ft.
1. I'ne cost of coal per hour for drivin® 2
steawsnip varies as the cube of her speed ihru
ths water, Show that against 2 current of 4 wi.

Sre .z s .
Sre bages 69-68 as to the ternm "varies as”.
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per br. the most esconomical speed for a 80 nile
trip (or any otner) is 8 mi/ar.

12. [n measuring resistancs with a slidz wire
oridde the percsntade error due to serror in
setting tne slider, 3, is
inversely proportional to
xc=—x2. 3how that the oest
nsasuraments can be made
when the slider is near thes riddle of the space
A3 whose length is ¢ units.

2Q0. For a certain sum a man adress to ouild and
line a rectangular water tank, witn square bass,
nolding 3000 cu.ft. What dimensions will call
for toe least lining? 2.1'x18.,2'x18.2!

21. 4 miner is to open a tunnel from 4 to 3. On
a level through A is a surface of separation
oetween soft rock costing $1C a ft.
SRt - to tunnel, and hard rock costing 330
309, A 2 Ft. to tunnel. #hat 1is thz lsast
possible cost? Aobout %12,500

22. A beam of rectangular cross ssction is to
pe cut from a cylindrical log 24"
in diameter. Its strength will be
proportional to x*y, x and y oeing
dspth and breadtn. Find dimensions
of strongest beaan. Bv8 " x8/3"
23. The stiffness of 2 bsam 1is proporiional
to x®y., What are tne dimensions of the stiffegt
beam that can bs cut from the log in 2%.

24. Through the point (8,27) 2 line 1is drawn
mseting the coordinate axes at P aand Q. Show
that 48.88 is the minimum length of P3.




INTEGRATION

fhe orocess of finding a differential of a
function lzads to 2 second function with a dif-
ferential factor in each term. The process of
RELSACING btbis process, from the differential
to the funttion originally differentiated, is
ealled INU8GRATION, and is indicated by placing
tne IRFEQRAL SIGW, f, (an old fashioned long S)
oefore the differential to oe integrated.

I'berefore i 4 ggx) = @(x) dx

then  F(x) = [o(x)ax

But F(x) is not the only quantity whosz lif—
ferantial is @(x)dx, for if A is eny coastant
wnatever w{x)ax d{P(x) + A}
and so Jo(x)dx FEx) + 4

fhe number 4 is calisd a JONS[ANI OF I °/¥GRA-
Ti0N (or The Arbitrary Constant) and must oe
addzd as an sssential tere tc svery resulb oo- \
tained by imlegration.

l'o eacnh of ths main differential formulas cn
page 21 there ecorresponds as integral forrule:

]

i

1. dle)=0 JOo =4
2. dlutv]=dutdyv f{du+dv] = fdu + fdv
3. dlcvl=e-dv feedv = ¢ fdy

Bc+1 .

-

4. d(B°*1]=(c+1)3%dB /B%48 =
(Provided o+1i is not zoero)

6. d[(FS]=F+dS + S<dF FS = fF*dS + [S-4F

6., d{sin 8]= cos(6)ds fcos(8)dO = sin(8) + A

dlecos 0)= —8in(8)d® [sin(6)ds = —~cos(3)d6+A

L\

ou
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Tone tollowing pounts in rzgard to the appli-
cation of ecacn formula must be noted:

1,4dd zn A&rbitrary constant to every integdral.
2. Intedrats caco term of a Sus sseparately.

3. A constant factor, ¢, may be moved =2zt will
trow one side of the f sign to the other.

4 .4ake sure that the sxact differential of the
VARIABLE BASE is present opefore applying this
formula to a power. Increase the exponent by
one aund divide by tne {#Y¥ exponent, — unlesss
tnat would os dividins oy zero.

Obgerve that whea 2 = -1 no such formulg as 5
asan be deduged. Hence tnis method fails to La-
tadrate d3/83, which is treated later, page 3C.
5. This tormwula is excsptional end will b2
treated latsr, page 75. At present we note only
that if ws transpose [3-dF and write PS as Ffas3
it yields [#dS = F-/d5 — fS-dF which zhows why
a VARIABLSY FACIOx, F, MAY NOT be moved to the
other side of the [ sign unless a certain new
igtegral (=fS:dF) is introduced as an offset.

& .Make sure tnat theg exact differential of the
andle 1is oresent oefore applying 86 or its zate.

Two rasults from the same intedral wmay differ

in the #0x4 of the constant of inlsqgration and

yat not disagree as to meaning. Thus:
f2(x+1)dx = f2x-dx+f2-dx = x®+zx+Const.
or thus /2(x+1)dx = [f2(x+1)d(x+1)
= (x+1)% + A

= x2+2x+(1+A) = x2+2x+Coust.

To VERIFY an intedgration: - differentiste - the
result, which should give the quantity origin—

ally under the [ sign.
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In applying the formulas
FIX the differential of oase,
tiel of andle, oefore integrating.

stant factor is lacking
ately OFFSET

f3CdB or [sin(3)ds,

or the differan~
If a con-
SUPPLY it and immedi-

this by supplying its reciprocal

as a factor in front of the f sign. Thus:
J(2~3x2)3-xdx . fsin(z/2)dz
If we take (2-3x2) as B } If we take (2/2) as @
-8x"dx wmust Dbs the dB dz/2 must be the 48
So supply the "-8" and ¢ So supply the ¥, and
ottset by a =%, outside . offset by a 2 outside
= =Y [ (2-3x2)3 (~6x*dx) != 2 f sin(z/2)- (42/2)
= -y, (Zoo®)® 4y 1= 3 (-cosB) +

HYEMORIZE these intasgration formulas thoroly:

JO = A
Sldutdv] = fdu + fdv
Jerdv = ¢+ fdv
[BC-4B = Si;l 4 fgver epby
[cgs(@)d@ = sin(8) + 3
[3in(8)de = —cos(d) + 4

DRILL

Transform cach to Lle exact Joru
above forwulas before integraling,

of one of the
Lo not omit

Sx®-dx
[ (x-sinx)dx

$he coustent of tiiegration ii any case.
1. f(1+3x)+3dx  fsin(20)2de

2. f(x+1)dx S (x2+x3)dx

3. f{1+3x)dx fsin(48)da

4. J(x2+1)-2xdx

[/x%+5 *2xdx

I /%" dx
f29-cos(87)d3 ‘
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5. [/T=x -dx, fdz/(1+2%), [sin?6°cossr 48
6. f(1+2x)2-dx, [vI-2x-dx, Fsin(¥,9)do
7. [(1-q9)dg, f(1+x2)2-dx,  fcos(l+x)ux

Integrate each in two ways and compare resuits:

9. JS(x%+x)2- (2x+1)-dx
Integrate and verify res
12. [8(1+x+x2%)dx

13. f(sin8+cos8)d8

10, [(x2+1)-2x-dx
11. [(1-x3)x2-3x
ults by differeatiation:
14, [sinY9:cos@+de
15, [i2(i+x*)x%dx

d FRtax
Le. ﬁ7§' J CX <+

dx X dx
AR er LB et

18. fsin(%Jde [20339-d8
19
20. [3x24x
21, [(x2-1)xdx [(2x+1)3%d

22, [cecs?3-sinR-48

JA+3x)3dx [x/xedx

23 $ino-dg
o [(l+cose)2

J{xPe1) 28

. J(2r+1)dx/220

. Jeos(Zx)sin(x)dx
7. [ (x 2+ 1) dx/V/X

28. [2sin(F)cos@)dx

AV}

I

NN
(o> # 11

i

f{s®+1)2sds

x2-dx [.4x

ST+ VZXx~1
Jdx fxz dx

(x=-1)% (1+x®)°

[3ind&- 39 [ccs?—d@
[vZxFI-ax 3£

X
fdy//y  [30-40
[(x2+1)dx [(i-x)ds

[Cosg dq
V1-=31D°0
30, [-itgoss  4a
yR+e1n '
31, [(y+z)2(dy+iz)
32, [zry(xay+ydx)
33, [(xdy-ydx)/x*
34, [x-dx//Tx2T
35. Ssin(x)ds/cos(x)

X

29.




DELE]RMINATION OF CONSTANT

If a train soes 30 ai/hr, and we wish to szt
down a formula tor 1ts distancs from soms ocint
on tns road we nave in tnis data ths equivalaat
of ix/dt = 30
fror which we get dx = 30-dt, and intsdgratins:

x = 30t + a constant.

in order to determine tnis constant we must et

additional intormation about the traia: 1t will

do if ws xnow wher: it was 2t somes special tiue

or in other words if we know a PA[R OF CORR#k-
SPONDING VALUKS of x and t. Suostituting such

valuss into tne intssratsed 2quation enables us

o 3ateraianzs ths valus of the constant of inbe—

sration.

Fhus if we bave dy=sinZ-d4, ard also have the
special fact tnat wnen 4=0° we hnave y=0 also:

intedrating: y = —coss4 + 4
substituting: C = —o0s80° + 4 = -1+ 4,
solve ror A: A =1

= —cos/ + 1

insert tnis valus, y

I'he spscial pair of corresponding values =m—
ployed for deterzining ths castant of integrs—
tion usually rsoresent the initial or final
conliitions in the variation of the guantities

EXERCISES
Integrate and determine the constant by means
of the basyr of corresponding values givean.

1. dy=2x%*d4x, and y=1 when x=1 Sy=4x3+7




23

4. (1-s*)ds=iy and y=C when s=0 3(g~y)=g2
3. dg=20*dt and t=1 when g=1 g(3-2t)=1
4. dy/dx=1’and x=1 when y=1 y=x
.5._dy=x’dX'/;§II and .x=2 when y=3.y=§(x3+l)§F3
3. dz=2dy and z=Z when y=1/2 z=2y+1
7. dy/dt=3t2 and initially y=7,t=0 y=t3+7

3. dQ=einB:cosB-d8 and when 3=0,2%2, 40=4+gin3B

2. The slope of a curve =xy® at the point (x,y)
and the curve passes toru the ooint (2,1). Find
its squatioa. (x2 -3) y+8=0

10. Tne slope of 3 curve 1is at every point the
reciprocal of its ordinate. Find its equation
if it passes thru (1,1). yE=2%~1
11. The siope of a curve at (x,y) is —-x/y, and
it passes thru (0,5). Find its squation, by in-
tegration and determlning constant. x2+y2=25
12. £'(x)=x2?+vx, £(0)=1. ¥Find f(x)
' f(x) = (x? *?Vﬁ)3 + 1
13. (1) =7, ¢'(x) = 6x(x+1l). Find 9(x).
p(x) = 2(x®+1) + 3x?
14. P'{x) = [F(x)]®, F(O) = 2. Find F(x).
F(x) = 2/ (1g2x)

15, P(x) F'(x) = x, F(3)=5. ¥iad F'(x).

F'(x) = x/vid+x¥




RATE PROBLEMS

In the following problems, when a rate is re-
guired it is found by differentiating the for-
mula given for ths quantity whose rate is asked
for. #HAhen a rate formula is gdiven, tne formula
For the guantity desired 1is found by intzsgrat-—
ing and determining the constant by wusiug the
given initial of final state of affaire,

FROBLEMS
1. The cost of digging a pit is $% wultiplied
by the horizontal cross section in sq.yds.times
the sum of (ths depth in yards + one-tenth its
square). At what rate wnust one pay for =sxcava—
tion al the bottoxr of a 40 yd. pit of uniform
cross section? ' *3.75 per cu.yd
2. #hicn increases more rapldly 48 X passss
taru the value <=4: (2x)%2 or 4x(3/3x)?
Their rates are as 1:1.44

3. The speed of a body tnat starts from x = 5ft
at the time t=2 sesc. is 3t(1+t) ft. per second.
Work out a formula for x in terms of .

x = 1, (Bt3+12t2%-27)

4. The speed formula being dx/dt = 3t2 ft/sec.

and the body reaching x=12 ftt. when t=1% ssc.,
fiand what x was when t was zero. 34t

I

5. The time—distance formula for a moving point
is x2t(1-t)2. fork out the time—speed and the
tize—accsleration equations, and plot all thres
from t=0 to t=1.

5. At 1 o'cloek, @ is increasing at the rate of
(212+T+1) units per hour. If Q is 40 units at 3




o'clock, find its value at quartsr past four.
Aoout 79 units
7. A mine is deepened at a rate of (20-y)2x,015
'Y per year, y being the number of years since
the mine was opensd. How deep is it at the end
of 15 ysars? 593 ft,

8. The height of the tide in feet at ¥ n'eclock
psing given by the formula H = 7-sin(N/2), /2
opeind 3 numoer of radians, find the rats at
whicn it is rising or falling at 10.30,

Rising 1.80 ft/ar

9. If Q=3x/(i+s) and s=v/1-x2, find the rate at
which Q@ incrsases when x = ¥, and is increasing
at ths rcote of ¥, units per ssc, .B1Y

10. As a man walks out =zloni a spring voarld
one 3ad siaks to a distance of y =.(x2/15)(x+23
inehe= when he is x ft frow ths wharf ond. If
he moves alony 2t the rate of Zrt/s2~., how
Fast is the end sinking when he starts? when he
nas goa= 10 ft.? 0 and 3.77 ft/sec.
11. find f(x) it its derivative is_¢/x=1 wiile
£(2) = 2. £(x) = 3 [/(x=1)% + 12%,)
12. A body falling down a nole from surtacs to
the center of the earth, arrives with waat
spe3d, if spsed = v mi/sec. at x mi. below tne
surfacs, and 5230 v-dv/dx = 32 - .008x?

4,32 mi/sec.
13. A train is [40t2-5t*] miles from the start-
ing point at the end of t hrs. Get its speed
and accsleration in terms of t¢.
14. A spring coumpressed to 2 length of 8 inches
starts to extend and bedins Lo viereve, one ena
moving with a spsed of [30-sin(40t)] in/sec, t
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being the number of seconds elgpsed,‘and 40t a
corresponding angle expressed 1in ra@xans.‘ What
is the lsagth of the vibrating spring atter.a
iapse of .2 sec.? 3.87 in

15. An automatic record shows that the mork
one by a certain engine in .n hours oeginning
it 8 A.M. is 18n(10+5h-%h*)10® ft.1lbs. ¥iod
the power being used at 10.30 A.¥. in_horse-
powers, one horss-power being equgl to \959.t§1
ibs, per sec. Also at 9 A.M. 205 HP, and 134 dP

16.dy=xdx/ (1-x*)?, and when x=0, y=0. ¥nat is
in tgrms if x? ’ y=x‘/2(1-x2§

17. From Regnault's experiments it apn2ared
toat the number of heat units, g, reguired to
raisge t?e tempsrature of 20 gms,tgt weter feom
0 T° Cg. is given dy the 2quation
e ¥ q = %O[T + §T210~s + 31%1077]
If heat ig suppli2d to 20 sms. of watzr at the
rate of 10 heat units per sec. find the rate at
which the temperature rises when T=50.

.497° per sec
18. A balloon rises in m minutes to 2 height
of [10n//4000+m®milss At what rate i: it ris-
in# at tne erd of the First hzlf hour?

About 7rni/hr
12?. The formula for the force nsed2d to raise
an hydraulic elevator x ft is ¥ = (2.2+.0025x)
tons. Find the work done in raxsing the sleva-
tor 60 ft. Given d{work)/d(distance)=forcs act-
ing. About 142%, {t-—tons
20. During an sxplosion the gas in a cylindsr
is doind work by pushing on the piston at tre
rate of [80,000 — 24*103(t-,05)’] ft.lbs. per
sec. at t sec. after ths spark started the =x—
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losion. How many ft.lbs of work are dons in
the first 1/10 ssc. against the piston? 4000FP.

21. A meteor is falling to the earth, Its disg—

tance from the CENERET_QL_Lna_garth at the end
of t sec. is [7000-¥{10000t~t2}] miles. Snhow
that it strikes the SURFACE of the sarth when t

= 1000 #ith a spsed of 80miviin,

22, Assumins tnat bthe value of a mahogany tree
over 40 years old, say y years old, increases,
it left to grow, at an annual rats of

$120{3/y - 3} + 3/y]
find tasz increase in value from the ags of 100
years to tn: age of 200 years. About $8000
3. If tazre wesre a2 hols, reaching througn the
centre o7 the z2arth to tns other side, a body
ta2llins down it without resistance would 1in =
pninutess reach a distance of 4000-cos(m/14) ai.
from tns centre. At what spsed will it pass
thru the center? 286 mi/wmin.

24. A w2ight hangds from a spring and rises and
talls so that its speed is 2/3y—-y? cw/sec, y co
peing its " distance frow the upper end of the
sprini. %ork out & formula for ths acceleration
in teras of y, hccel.= 4(4-y)en/sec?
25 dnen a ball is thrown straight up it reach-
es a nsight of (8-18t2+140t) ft. in t sec. When
does its speed change from up to down?  t=4.38

26. Acceleration being constant and speed and
distance besing zero whsn time is zero, prove

that distance varies as the square of the time,
27. When a bullet penstrates a target its spsed
is raduced 2t the rate of 12/I%x fest per ssc.
per incn. If it strikes with a speed of 2400 ft
per sec,, how far will it pznetrate, x Dbeing
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tns numosr of inches penetrated at any instant.

About 44 incinss
28. Tns speed of a meteor before it reacnes the
dens=r part of the earth's atmosphere is divan
in ft/sec. as V = {/102%r —r2}/{200r} wnere r
is its distance from the CENTER of tne =arth
measured in feet. Find idibLs acceleration at =z
neisht of 15000 miles above the SURFACS of the
earth, 1%, ft. psr ssc.psr sec.

29. In pulling a stake out of tne ground, the
resistance, R lbs, (=dWork/dDistance) dacreases
as the stake gives, so that L[ the numbzr of
inches it has been raised, is rzlated to R ac-
corking to the formula: R2(L+4)% = 10, {Calcu—
late ths work done in raising tns stake the
tirst five inches. 27.8 ft.lbs
30. 4 4 foot wheel is rolling along 5 £t per
second. The coordinates of a point on fts rim
are x=2{1-cos9) and y=2(9-sind). What are the
formulas for the vertical and horizontal speeds
and accelerztions of this point, and what is
the numerical value of d3/dt if 3 is the zngle
which meezsures the rotation of the whsel?

|
|
|
-
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TRANSCENDERT AL FUNCTICHS

A function which cannot be forrwed from jts
argunent in gdeneral by a finite number of addi-
tions, nultiplications, or raising to integral
or fractional constant powers is called a Tran-
scendental function,

I'he most faxiliar trenscendental funclions
are bthe triJonometric funciions and the loda-
rithys witn their anti-functiions, the circular
functions (arcsin gic,.) and the exponentbials
(pas= with variadble exponsnt),

'nz  +transcendental funztions Lhat are rost
conspicuous in elementary calculus are
sin v cos v ban v
arcsin v arctan v

Leg v e? (e=2.%18+)

for finding a diffsrential,

We get d(log v) oy applying the full Frocess
= a_ge
aecn: Adod v oo loa(vaAv) = 103(v) - 1),¥tAY

N
(921
€
&

o

Aq Aq Agm T v
e = JL-log[l + QZJ 1 Qv
v/
= lod[l + Ql] 'v 1 Av
ES v v Aq
F: ilod ¥ o jogfz.718+]) . L4V
iq ' v dg
5 dlog v=  logl2.718+]4L

B

In step "P" the difficult part is the limit
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of the guantity whese logaribhm appsars in &
Hotz thet the 2xprsssion

{1+ %}]vlév is of the Form (a1 + g)2/¢
whers € 1s an infinitesimal. ¥e can get an idse
of how this variss by takind a succsssion of
smaller and smelier values of ¢ and calculatins
ths corrssponding gowers of 1+e, We find
£ = 1. .1 .01 001 .0001 .000C1
(1+e)1/€= 2. 2,533+ 2.704+ 2,717+ 2.713+ 2.713%+
More slaoorate work shows Lloat thne figii =zp-
proachsd is 2.71328132545804+
a nurosr of Jdreal importance in analysis, usual-
ly denoted by "o" 2nd called the "Napisrian
Base". [f w2 use the fauniliar logarithms with
TEN as base, the factor "log 2.718" is .434224+
put if we take "e" as base ws make this factor
equal to 1. 7o secure the advantage of simpli-
cibty in this important formula it is customary
to use e~locarithms exclusively in all work in-
volving differentials or integrals, Througaout
tnls 000K, as in other 000ks on tne Calculus,
when no subscript iandicates what is ths base of
a losarithmn it is to os understood that tie

fNaperian or "e" logdarithm is meant.

de have then tne two additional formulas:
7. Logarithm d log v = dv/v
7' 10-los. 4 lod,ov = (.434284+)dv/v
The intedral foruula obtained from 7 is
‘ Jav/v = los (v) + &
which takss care of the exceptional case undsr
the power formula (see page 42), [dB3/B, when
the powsr is tie winus first so that c+l = O.

-
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It is not nscessary to use sthe #Full Frocess
for Lhe other functions. Raco of tne remaining
formulas can oe worked ocut as applications of
the first seven.

3.The EXPONENTIAL formula: d[eV] = eV-qdv.
Put y = ¢¥, then v = log y, and by 7,

dv = dy/y, whencs dy = y'dv
But (=] = dy = yrdv = eV-dv.

Any CONSTANT with a VARIARLKE SXPON&NT way be
orousnt under this rule by replacing the con-
stant, say C, by its equal

C = 8[10?563}
whence we have
g'. d{C¥] = C¥-1log,Crdv

€. I'ne tangent formula: 4 tan 9 = ssc?3d 48,
4 tan 9 = ¢51ind - cosd-d8-cosd —(-sin9+d9)sing.
' cosd cos?8
;ﬂc0529+s:n2@)d8 = sec23°4a
c0s23

dote egain as on pasz 24, that d6 must oe ex~
pressed in KADIANS.

10, The arcsine forzula: dlarcsin v} =
Fut arcsin v 9, whence v =sin 5 and
so by 3, dv = cos8 49 and therefors 1v

dlaresin vl = 49 = dv/cosd = dv/V/I—vE, <2

{111

11. The arctangent formula: dlarctan v] e
Put arctan v = © whence v = tan8 and v

so by 2, dv sec?8 d® and thersfore ﬁi v
)

dlarctan v] = d® = dv/sec?0 = dv/(1+v2)

In using farmulas 10 2nd 11 the d3 must be
wsasursd in  RADIANS  (see pase 24) and so  the
arcsin(v) and arctan{v) must oe redarisd aot as
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angles®, (and expressed in any way we please),
but as the WUM3ER OF RADIAKRS in the angles.

Formulas for the differentials of sec 9, arc-
sec v, etec., mway oe found in similar wanner.But
these are not so often used and may be worked
out at the time when they are needed.

.

Integral formulas are made from cach of the
differential formulas above, as on page 48, e
then have the following list, which should be
MEMORIZED with dreat care:

dfel= 0 JO= 4
dfu+vl= du + dv Jldu+dv]= fdu + [dv
dic*v]= c-dv ferdv=s ¢+ fav
d{F-S]= P*dS + S+4dF SRdS= P fd8 = [3-4F
a[8%1= o-8°=ledg  fpc.qs= 2351 4 4
{c#—z, erd
d{log vl= ¥ [z log,v + A X
v v
dl{eVl= eV-dv Je¥edv= eV + A

d{sin 8)}= cos 9:d®  [ginB+d6= —co0sd + 4
dlcos 8)= =sin 8:d9 [fcos9+d9= sin 8 + A
d{tan 9]= sec?0°d® [sec20°d6= tan 6 + A

o 1= _dV dv R
dlarcsin vl=s -z2d-o = oA
[ n v] e J Tﬁ?g arcsin v
dlerctan vj= 1§32 f{%%i’ arctan v + 4

*In fact the expression arcsin v {or arctan v)
may appear in a Pormula_ where no idea of angle
is involved, (For oxample #24 on page 114), just
as bt~"gsquare"” appeara in sg=33t%, where-bthere is
ro idea of the arsa of a sglars.




DRILL

1. 4d eX, f cos 3x dx, d tan®x, [sec?x. dx.
2. fdx/(1+x), [f(1+e¥)dx, d cos 2z, 4 low(Zx)
3. 4 arcsin x%, f-:%%g; d logsing, /‘ aX
. d ot K 3x2 ‘i)\
: arean o fZ?E?’ a % f1+4x‘
5. d logtan 8, fsin 2x dx, d sec?6, [s=3¢c229°46
2
6. 1 lo3(3x2+5), fx-eX"dx, d arccan%,[/l_gxz
7 COS X 4X 4 COS X ind ax
7. sin x ' sin x’ d arCSlnX’IEBETX
. dx A 1 dx 4 1
8 f1+4‘x’ 1+4x’ f(1+4x)"-” (1+ix)7
2. i:‘i‘%: i -I:(-_'—-! f%—;g-};(-, d le(x/}:)
10. 4 arcsin 2x fl =2, 1leXl2,  [{e*-1}2dx
-3

In the following, integrate and cetermine the
constant, and then change to the culi-function,
That is change

from x = A sin ¥ to ¥V = arcsin(x/i)
from x = 5 arcten Y to Y = ten(x/B)
from x = C log W to W = of %/C) ‘
from =x = K eZ to = log, (x/1)
il. dx=dy(1+x), x=0 when y=%. y=2+ios(]+x),
or x = e¥V=9¢ —1
17, dx=dy(1+x2), x=1 when y=0, x=tan(y + n//)
1s5. dB=cos?8+dx, x=2 when 8=n/4, O=arctan(x-1)
14, eVdy=dx, initially x=y=0. y=lod(x+1)
2
5. 2xyrdx+dy=0, x=1 wnen y=e. y=gZe X




ye1ix=3dy, x=3 when y=e/2. 2y= g%/3
17. (1+4y%)dx = 2dy, x=y=0 initially. y=Y%tanx
18, 2dy+y*dx=0, x=2 when y=2/e. y=2 e—ﬁgx
18. dy + dx/T:§§=O, y=1 wnsen x=0 y=cos x
20. dyty dx=0, y=2 when x=0. y=g-e~ %
21. dy=(l+y?)dx, x=y=0 initially. y=tan x
22. cos y°dy=dx, y=0 when x=1. y=arcsin(x-1)
23. e¥-dy=2dx, y=log,2 when x=1 y=log(2x)

24. dy + dx(1-y)=0, y=0 when x=3. y=1—.,0488 eX

Leduce formulas for the following differents-
als by melhiods similar to those used on page 61
and gitue Lhe corresponding integral formula in
eack case:

25. d cot 3 27. 4 sec 9 22. d
26. 4 arccos v 23. d arcssc v 30. 4 10V

¢csc 3




SETTING UF PrOBLEMS

In the following problems (pages 88 to 73) it
is necessary to SET UP the problem, that is Lo
determine what variable and constant guantities

squire consideration, to adopt a suitable no-
tation for the variavbles, =znd to represent the
relations petween them by ecuations. The solu-
tion of the problem then depends upon these
equations and others found f(row them by diffsr-
entiation or intedration.

In setting up a rate provles, 2t least three

VARIABLES 2ust be considerea, one of which is
the RATE of increszss of @ cecond per unit in-—
¢reasé in tne third. senote sscond 2nd third oy
sinsle letters, representing the Rate by the
quotient of thaeir differentisls.
- The nzaes of ths JNIPS in shich the varissies
are measured affords an imrortant clue: thus it
a rats problsm involves wvariunlessz v2ezsured in
deys ani dollars, ths Ralecs favolved may pbe in
dollars per day or days wer Joller.

The guestion to be enswsreu should be clezrly
FORMULATED ic the notation adoptad.

JThenevar possinle & DIACRLM should show as
clearly es possible what thz variavles are

If N variables are introducad, =1 EQUATIONS
rust be found connscting thzn before any dif-
ferentiatirs or intsdrating i3 doasz.

fWihen the oroolesw vreguires =2 intesdration =nd
the sudsequent detcrwination of s 0O 8i4.7,
there wust also be noteu 2 set of corresponding
valuss of tne variables, usually tsken frow the
initial or final state of thinds ip tne problem
The =2auations ststins tnecss sinulisnsouvs values




io not count toward the N~l1 egquations: thes:e
noitd only ror 2 spacial state, wnile the HN-1
souations aust deserics relations waich hold
patween the variaoles throughout the problem,

For 2xauwpis, take the problem to find ine
rate zt winicu two ships are separatinsg if one

$ sails north at 10 mi/hr while
the other sails east at 8 mi/hr
2\ It the first msntionzd sniy weas '
o initially 5 niles north of the
HERY other, and the rate of scoarat-
5. % ing is required one nour later
by Let x wi, and y mi. b2 uns

‘distancss wmoved by =ither snip
in b nours, end 2z mi. b2 tneir distance apart
2t taez 2nd of h hours. e nave tnen 4 vazrisoles
and tas tnres equations:

(x+5)2 + y2 = 32
dx/dn = 10
dy/dh = 8

4e formulats the question® to ve answersd tnus:
dz/dn = ? when n=1.

4ts a sszcond example, take the problzm to find
the depth of water in a2 conical cup with a semi
vertical znsle of. 30° 20 szc.
after it was filled to a deptn
of 3 incass, if bthe walbzsr [lows
out 2t 2 ratz oroportional to
tns dzsptn, b=2ins initially 3
cu. in. p2r sac.

Lat x in. = tnz depth ond WV
cu.in. = the volurs of wsatsr in

i

tos cup st bhne z2ad of t sz2c. Setwsen tnese o
varisoles 3 navs two squztions:



V = Yxn(x ten 30°)2
-4v/dt KX
ana since dV/dt=5 wnen x=8 we yave 3=k38, so k=%
tis formulate the quastion* to be answered thus:
x = 7 unea =20
To get x, we must sliminate V, integrate, and
to determine the constant of intedration we
cust note tnat tnes initial conditions are:
when t=0, X=3, and V=24

{n forzind ths 2avations whicn connsct vari-
»oles,the relation betwsen the sgs. of the sides
of & vight triangle (Pythadorean Theorem, a2+b2
=c®), ths proportionality of the sides of sigi-—
lar triangles, tus verious mensuration forrulas
Zne, nr2, dne?, Yonur., Yatn. dnc®n, cte gust
o2 smoployed irsqusatiy. (See pase opp. page 1)

~Soms of the rost fregquentliy recurrins cases
of vslationsnips Dbetazs geometric variezpbles
invelve the following diasrams and forgulas:

x4ryRege=p?

~
an

ihe stateunent that a quentity "VARTAS AS" an-
otner means that the first is 2 constant wuiti-
giz of the second Thus

[ H H Was " Y —

y varies as x" (or"directly as x") is y=kx

*Ihe rest of the solution is left for ths stu-
jont. 3oc #1 and #2 on pade 68,
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Furtner modifications of tnis idea are:

"y varies inversely as x":

"y variss jointly as x and 2"l y = Kxz.

The "k" is called PROPORTIONALITY FACTOR and
its value depsnds upon the units in which tas
quantities ars wmeasured.

AREA of circle, A=kD?; x=7/4 Ffor Ocm & om, but
for clrcular~ﬂ1is and bthougsandths of inch, x= 1.
Aau o gircle, a=kr8; k=1 for ocum. & radians

butb T/180 = .0174 for on. and dedrees.

When the valus of "k" is not given it must de
found 1in ths saws way as the constant of inte-
gration: Dby substituting a set of known corre-
sponding valuss of the variables and solving
the resulting squation for k.

PROBLEYS
Upon beginning the solution of each of ithese
problems: 1! draw a good diagram, 2: describe
accurately lhe variable dencted by each letter,
and 3! formulate the questisn to be answered.
1. Find the spesd with whicit the two snips de—
scribed on page 88 are separating, 12 pi/hr
2. Find tne depth of water in the conical cup
jescribed on pazs 36 atter 20 ssconds. 4%,"
3. A pesoble dropped into still watsr creztes =2
circular disturoance whose radius lznithens 172
cn/sec. At what rate is the disturbed srea in—
reasing when the radius is 1 pmster?
© 4bout 3. sq.r./ssc
4. According to HNewten's Law of cooling, tine
temperature of a not body falls at a rats which
varics as its absolute tsuperature. How 12n4,
then, does it taks a body to cool From 5000 Abs

y=k/x. (or xy=const)

a




to 1000%°Abs., if it bedins to cool at the rate
of 10° per sec. 13 ain. 24%, sec

5. An aeroplane, 2 mile above a train, is fly-
ing north at 40 mi/hr. Just below it, a aile
vertically, is a train goiug West at the sane
rate. At what rate ars they separating Lthree
minutes later? 53%, mi/ar.

8. A soap Dubble remains spherical and its dia-
aeter 1ncteases at the rate of 2 cn/ssc. At
what rate 1is its volume increasing at the in=~
stant it becomes 15 cu.cm.? 29,4 cu.cm./sec.

7. When das blows out of a container into a
vacuum, it blows at a rate proportionzl to the
amount remaining. If this rate was 10 gn/sec.
when 100 ¢ms. remained, now long a time clapses
while half of this amount blows out? 6.93 szc

8. At high water the gandway to & float, 15 ft,
long is horizontal. The tide talls & versin %
ft in the next h nours. Find the rate (in radi-—
ans per hour) at which the gangway is turning
at the end of 2 hours. .17 rad/hr

8. The diagonals of a rectangle are increasiang
at the rate of 2 in/sec. and the rectangle is
lengthening at the rate of 2%, in per sec. When
its dimensions are 5in.x 12 in., how fast is the
plate narrowing or widening?

10. A ship sails due north 10 mi/hr. A stsanmer,

7 mi. South, 24 mi. Nest, steams due &gsh at
twice that speed. At what rate is the distance

between them decreasing? 22 mi/br
11. An elagtic balloon is being filled with gas
and remains spnerical radius increasing at

a rate dr/dt = 2¢/(5 +t ft/min, t oeing the
nunber of minutes since r was zero. How long
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doss it take bto inflate il to a dianeter of 20
£t Nearly 26 minutes

12. Tnz side of a squars increasss a2t a rate of
10 ft/min. and its area at the rate of 10 sq.ft
per min. How large is the square? 8"x3"

X3
13. I'he radius of 2 sphere increases at 2 rats
inversely proportionel to its own lendth. Get a-
formula for the volume in teras of ths time.
14. An invertsd cone is beiny filled with water
at a2 uniform rate of 3 cu.cn/sec. If the cons
has a sexi-vertical angle of 47° at what rate
is the surface rising when the water has reached
a depth of x cu? 5 em? 10 co? .83/%% cn/sec.
15. A revolving light throws its beaw along a
straight shora line. The light makes three con-
plete revolutions per minutz, and is 1000 ft.
from shore. At what rate 1s tne Deaxn moving a—
long shore 4 sec. after it striikes the nearest
point? 3290 ft/sec.

18. A man is walking over & bridgs ab the rate
of 4 wi/hr. A boat passss under the bridde just
bslow him. It is towed at 8 mi/hr and the canal
18 perpendicular to znd 20 ft below the roadway.
How {fast are the man and the poat separating 3
minutes later? 8.94+ nmi/hr

17. A countsrcink bores out a conical hole with
an angle of 90¥ at its vertex. If the area of
the conical surface increasss uniformly, show
that the depth increases at a rate inversely as
the depth and the volume at a rate directly as
tnhe depth.

18. Accelerationr Being constant and speed and
distance being taken as zero when time 1s
zero, prove distance varies as (time)?.
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18. A rectangular plate 1is expanding at tue
rate of 10 sq.in/sec in such a way that the tuwo
diagonals remain unchanded in lensth. At woat
rates are the two sides chanding when the olate
is 4in.x20in.7” Incr. .521 and decr. .104 in/sec

20. A 50 ft ladder 1is being raissd oy hauling
one end up the side of a building while thne
otner end is drawn along the ground. If the up-
per end is 30 ft above ground and rising 2%, ft
per sec., at what rate is the angle between the
ground and the ladder increasing? 3%,%er szc
21. If +ths oacceleration of a body varies di-
rectly as the speed, show that bcoth speed and
distance are exponential functions of tine time

22. When a chip is placed in 2 current and re-
leased, it starts from rest end roceived an ac-
celeration proportional to ths difference he—

tween its own speed and that of the watcr. It
the curr.nt makes 8 xi/nr, and after helf a sac.
the chip is goins 6 wi/hr, snow tnat Lbs pro-

portionality factor is J¥7¢ for units in riles
and hours.

23. A man, 8 ft nish walking at the rats of
3%, miles an hour, passses under a light 15 ft.
above his path, which 1is straight and level.
Gst a gsneral formula in terms of t (the num=—
oer of minutes since hs was under the light)
for the lensth of his shadow, and for the rate
at which it is lengthening.

24. A circular metal plate expands so that its
radius incrzases 1% mn/min: at what rate does
its arsa inctease when the radius is o ca?

25. I'he cost per mile of running a steamboat
varies as the cube of the speed. FProve that tne




cost per hour varies as the fourth power of the
speed.

28. Napier's point, P, epproached a fixed point
F, at a rate proportional to the distance PF.
Show that the formula for F¥' involves an expo-
nential function of the time.,

27. ANater is poured into a conical cup at the
rate of 14 cv.con/sec., and fills the cup in 11
sec. If its depth is then 7 cm., how fast was
the water—level rising just before it overflow-
2d? 212 cmn/sec.
23. A stone falls 16t2 ft in t sec. An observer
on & level with the point {from which it falls
and 064 ft. distant follows its fall with a
rounted telescops. At what rate zust the tele—
scops rotate at tne ends of the 1st, Zad, and
3rd szconds? .470, .50C, .247 radians/se
22. Dariuce a formula for centripetal zcceleras-
tion in this nanner: Forw expressions for the x
and y of a point revolving zvout the origin in
2 circls of radius R cm. with an andular speed,
constant, of w (omega) radians per second. Find
porizontal and vertical accelerations by dif-
fersntiations, =and show that their resultant
points towvard the origin and that its magnitude
is Rw? cm, per sec. per sec.

30, The acceleration of 3 meteor is inversely
as ths square of its distance from ths earth's
center, dbeing 1/185 mi.per sec. psr sec. at the

surface, 4000 mi. from the CENTRE. If its speed
was *, mi/sec. when 3000 miles apovs the SUR-

fACKE, with what cveed does it strike? 4% mi/sec

Note. To intoegrate dv/dt = —k/x® multiply the
seoon? member by dx and the Tirst by it gqual,
v=speed). This gives v dv = <k dx/x%2,

v dt
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31. A man is ¢ ft. high and the sun i3 sinking
at the rate of 2° per min. At what rate is his
shadow lengtnening when the sun is 13° aoove
the norizon? 5.92 Ft/ain

32. If the rate at wiich a quantity increases
is proportional to the amount attained, show
that the graph repressnting its drowth must be
of the y=aB¥ type.

33. Force in dynss eguals wmass in ¥rams times
acceleration in centimeters per second per sec—
ond. Deducs a formula for centripetal force in
the following manner: Make a formula for the
vertical neisnt of 2 point movindg eround a cir-
clzs of radius ] cm., with speed v cw/sec.

Frow tihis [find veriical speed and vertical sc—
celeration. [he centripetal accsleration ray oe
found by taking the vertical acceleration at
tne instant the movind point is a2t the dottom
of the wheel.

34. The diffsrential of work donz by an expand—
ing ¢as is proportional to thes pressure and the
differential of voluxe., Show tnat in case
tne <Jas is confined Lo a cylinder and pushes on
‘a2 piston, the work done varies 2s ths lodarithe
of the ratio of 1initizi and final lendths of
the part of the cylinder occupied oy itne das,
provided the das obeys Boyle's Law, the volume
times the pressure continuing constant.

35. Locate the highest point on the Ceardioid, a
curve whose equation is p = 2a(l - cos¢).
9=120°, o=3a, height =2.598a
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INTEGRALS AND DIFPERENTIALS BY SPECIAL METHODS
Relearn formulas on page 62

Separate sach of the following into two terms
and integrate czach:

1. f?:%de 3. j&i? dx 5. f tan28-de ‘
T 2. ey ~ N
2, '!'_J_.i ljv f‘?)ﬁ.j ax Ce flﬂ:hﬂ)ﬁ 40
v 1+x® coz 25
£y

In reduecing to arecdine and arctandent forns
first divide the denominator so zg to securs
the "1" of the formulaz and offset this division
by a factor cutside, Then write the other torw
of the dencminator as a sguare, and multiply
the numerator so as to produce the diffsrenticl
of the quantity that 1s sguared, and offsct ihe
rultiplication by anotasr facteor outside. [hen
apply the formula and write the intesral. Phus:

A ;z?;dx -
% f T éoﬁarctan/ZZx +A

[de

1 emmz presin/Tx +24
e AT S A {,%/5 L
du X__ Az
P S
Sdx < dx , dx
S f4+x2 12. f/4~9x2 16. faz+A2
_dx . [odX dx_ _
) I/Z;x 1 'f16+x2 17. fa+bx2
dx Jd7 o dx
10. ] 14, f-o3_ . So=t
f/S-Z fX2+9 f/aubX’

Ths work of differentiating a quantity cx-
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pressed as a product, a fraction, a power, or 2
root zay somnetimes oe mads sasier 1if ons [irst
takes its logarithm and sinplifies it according
to one of the transformations:.
log(#+3) = log F + log 3. log B® = n*log 3
los (8/0) = log N — log D. log”/V = ¥,log V
Prhus, required d[/”/(l—x)] Put y = /% {1-x),
then log y = Y,log x — log(1-x which gives:
dy/y = /gdx/ - ~dx/(1-x3 Multiply by y
d logvx/(1=x)]zdy=lvx/(1=x)][1/2x + 1/(i-x): ix
= (1+e)/1ovi (1-x) ¢}

ir 0z following cases find dy in terms

makinsg use of log y simp}ified: e

19. y=x/I~x" 23, y—[l X r/z 27, y=xll=x)
X 1+x

20. y=x/(1+x2)% 24, y=x(x+1)2(x+2)% 23. y=x*

- Dym .
21 y= (e0)% 25, v=2El a5 yelg ()
22, y=x-x% 26. y=(x+1)2%+x 3C, y=2%X-35in x

INTEGRALION BY PARTS. As shown on page 4% the

dntegral forz ¢f the product formula may de put

thus:, B A

fR«dS = ~F+fdS ~ [fS+4F
fo veply tais formula we take outside the f[sisn
one of tas factors (the "First Part" P} of ths
quanbluy inside, tnsn offset by tollowing this
by & ninus sign and an intesral sisn, thus

JEdS = P faS - f () ()
and undar the [sign put the two factors:- S, dF:
S is the worked out result of ths integral
just preceding, that is the f43.
dF is the differential of the factor, F,
taken out,
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The part taken out should be something with a
simple differential; the part left in should be
something with-a simple integral; so ‘thal the
combination of these in the new intedral may be
easily integrated. Thus: .

) ds ® o ___ 43 fas d

fx*sin x dx = X [ sin x dx - [ "=cos x - dx

if the new integral proves less simple than
the original one, the wrcng part has probadbly
pbeen taken out., Thus:

fxsin x+dx = sin x-fdx ~ [ 3x®-cosx-dx

Nork out by parts, using [F*dS = F[dS-[S*dF
31 fy'cos y'dy 35 farcsinZedZ 3¢ fx2-cf-dx
32 [s-sin2s+ds 36 [x-e¥-dx 40 flog 4x-dx
33 fx-log x+dx 37 [x-es¥-dx 41 [xrcos3x-dx
34 [82+s5inf°d® 38 [fx%-log x*dx 42 fVarcsinV-dV

3]

T%O WAY INI'ZGRALS. TIbree important types of

integrals, for exzample:
fsin2x*dx, [vaZ=x? dx, Jfe¥-sin x'dx,

when integrated by parts give a new integral no
simpler than the original intedral. In these
cases, however, there is a second way of trans-—
forming from the given intedgral to the new in-
tegral, and the two transforming equaticns per-
mit us to eliminate the new integral and solve
for the given one. Here are the threce types:

Ssin®3x:dx=sin3xfsindx dx ~f(~Yacos3x)ces3x*3dx
==V¥,sin3%x°cos3x +fcos?3x+*dx, Againi-

fsin23x+dx=f(1-cos23x) dx

=fdx - fcos?23x-dx
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Add the two equations, tnus cancelling the
intedral in cos®3x, and divide by 2. Then:

[sin?®3x = x/2 - Y sin3x°cos3x + 4

To7T dx = STTTEL , =2x dx
J/1=x% dx = /I=x3fdx - f‘22¢f:§3
= x/T=xZ + fffgéf’ Again:
JUIRE dx = [ AEfaxe fAX  _  xidx

Y1-x v1-x2 /1-x2
arcsin x - f x3dx
/T—x%
Add the two equatjons, and divide by 2, then:
fvi—x% dx = Yo[xvI=xZ + arcsin x] + A,

fe“Rcos x+dx=e%%fcos x+dx - [e2¥2dx-sin x
AL . o D, .
= e®%sin x - 2fe®Xsin x-dx
fezxcos x*dx=cos xfed%ix —J%@egx(—sin'x'dx)
= ﬁgezxcos x + Y%fe?¥sin x-dx
Kultiply the second eguation by 4, add it to
the first, and divide by 5, and we have:

fe?Xcos x+dx = Y 62X [sin x + 2 cos x] + A

43.fe*sin x+dx 44.feXcos2x*dx 45.[cos?x+dx
46, fd-x2-dx 47.fsin%ax*dx  48.fe ¥sin x-dx
49, [Va2~x2-dx 80.fsin?{Yx }dx




DEFINITE INTEGRALS

The integral, ft(x)dx +4, 1is callsd an I¥D#EF-
INITE intsgral on account of the unknown con-
stant of intedration it contains.

If we nave dy=f(x)dx and if f(x) chandes con-
tinuously as x changes from one value to anotn-
er (say from x=a to x=p) the corresponding
amount of ‘change in y is found by subtractins:

£ dxrA) oy == () dx+A), g

The undetermined constant, A, cancels out, and

this more compact notation will be adoptled:.
XZ0 £ (x)dx or f: f(x)dx

This quantity is called "the DEFINTJE IHT{3:AL

of f(x)dx from x=a to x=b." o

f(x) is called the"INTEGRAND", tune x is tos
"variable of integration", a is ths "lower lis—
it" and b is the "upper limit".

In evaluating a definite intedral nots tae
CRDER of the operations:,

1. 3et the indefinite intesral,

2. det its value at the upper linit,
3. get its value at ths lower liait,
4. take the former minus the latter.

Ahen the indefinite integral has bssn found,
use a HALF BRACKET, "]", to carry ths limits
until they have been substituted in: thus

J2x dx = x®+Al? =(2%+2)-(12+4)=4-1=3

If the INTPIAL condition is that y=C whzn x=a
w2 have in deneral
y = [Xf(x)dx
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for tne upper liait leaves the indefinite inte-
grel unchanged, wnile the lower limit subtrdcts
2 constant: it 1s th: correct constant in this
case oecausz wnen the x of ths upper limit has
the value x=a, tiae Jdsfinite integral reducus to
zero and tlus satisfizs tne initial condition.

If the iuitiel condition is that y=y, when x=
Xg #S neva 1n Jenzrzl, for sitvilar reasons:

fi Ay = f% £(x)dx

ficte that tne gquentity fXf(t)dt depends upon
tae X 1n tno uppsr lirit, out aobt con the t in
toe intesrenc, wnico iiseacvpsars in the substi-
tutions. In fact tae intedral just mentiobed is
tas same as  fLr(c)ix or [XF(z)dz.

A definite  intciral dzesnls  only upon its
tisits and tas fora of tne inteygrand, and not
apot the variadle of intesration.

[n zvaluating d=2finite 1intedrals it wmust oe
kept in wind toat fdv/v calls focr logerithms to
tae oase =2=¢.7l3+, snd tnat ooty JSAdv/VI=vZ and
fiv/(1+v?) czll tor toe numoer of radians 1in
tns arcsine or tns arctandsut. (Sse pages 50-61)

EVALUATION OF DEFINIT® INTEGRALS
1. [3 x%dx, 1ﬂ% sinTdl [¥ dx/x, e eXix
3.0 A [ ssetain faax/(14x2) [%sinddd
5 fi A/ (L+x)=1.02&+¢ 5, ft\ ix/ (1+x2)=.7354+
4. JY $¥Xgx=3.1c+ 7. J% /% dx=1.33+

. J1x2el)2dx=u.7 5. [} da//i-z%=1.0472+
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Use definite integrals in solving lhese!
g. If dy=2/T+x'dx, how much does y increase as

x increases from zero to three? oY,
10. Find y when x=2 if dy/dx=2x® and initially
poth x and y were equal to one. 5%,

11. If dy/dx=f(x) and initially x=x, and y=y,,
justify the equation
Y1 T Yo * f f(x)dx

12. If x-dv=(v+l)dx and v—l when x=2, find v at
the instant when x=3. 2.
13. Given 1-s2 dy = 2y ds, and initially s=l
and y=3. Show that s = cosllog(/4y)].

14. How much does a curve rise between x=1 and
x=10 if gy/dx = 1+x27 342. units.
15. How much does y s3ain in value between x=1
and x=10 if dx/dy = 1+x2? .3836
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ARBAS

A certain type of aresa is of gJreat importance
on =account of its use in bthe representation of
other quantities, as well as becauss any plane
arca can oe Jdissscted into arsas of this Luypsz.

1t is cezlled the AREA UsDER A SOV . «
and is oounded as follows: '

oy thz curve at the top g ‘

by the x-axis at the bottor ; :

oy vertical lines at right and left }_{%‘P
sither of the vertical boundaries may @ ° :
degenerats inte points, as in the lower fisure.

Ihere are two important ways of approaching
the provolem of determining such an area:
1st, Considering it as a special valaz of
a variable area whose rate of increase
we can 32t from the curve cguation.
2nd. Censidering it as thz limit of 2 sux
of a set of rectangles.

Both methods lead to a definite intedgral: we
find that the area under y=f(x) from x=a to x=p
is equal to fao £(x) dx

It must be understood that batwesn these lim=—

its the curve is continucus and does not dip
oslow the x—axis,

FIXSL APFRCACH. Lebt x=v oe
pectween x=a and x=o. [hen 1
variable, lhe area detwesn x=
is a variable depending on v, an

P
o o

&=
o




oe¢ repressnted by the functional syrmbol, &(v),
the desircd area dzing A(o), while 4(a)=0 is
the condition to be wused for determining the
constant of intsgration. We can find the deriv-
ative of 4(v) oy the Full Frocess (sese pase 21)
430t AA(v) = ths strip of srea

standing on the Av.
N DE: This strip divided by Av
4 i must give the zverage h=ight of
DA the curve at top of the strin,
g #:  #hen Av becomes the infini-
a Y _ B tesimal, dv, the sverags h2idht
Av of the strip wmust a2pprozco as a

liwit the y of the curve on ths left side of
the strip, that is f(v), the curve deing y=t (x)
Hence we nave at thns limit tn:2 ecuation

iqéSXQ = f(v), and finally:
G:. d Alv) = £(v)-dv

I'hen, integrating tnis formula, and fixing
the lower liait as on pass 78, we have

hv) = [¥ £(v)dv, or by paze 7€,

= [¥ f{x)dx.
Finally let v=a be the upper limit, and we get

fres = A(b) = [ £(x) dx

That is:area under a curve from x=2 to x=b is
the detinite integral from a to b of {dx}x{tihe
value for y found from taz curvs zgquation.}

SECOND APFROACH. Divide ths base of the =zr2a
intc n parts. The n is to oz male larger and
larger without liwit, hence sacn part is infin-

itesizal and may be dencted by "Ax". Hote t.:st




n*dx = b-a. Brect a vertical at 2acn point of

division and consider the ractanslss whose

pases are tne dx's and whose altitudss are the
successivs y's of the curve y=f(x), that is
fla), flatdx), flatadx), Zc to f(b=dx)

It we form the product of oase and altitude for

each rectangle, thess products

A r will all ove of tne same type:.

: any one can oe represented by
: f(x) dx

4

+
IS A

-«-f_\‘"i . .
’ . and their sum by this symbol
Pt 23 fx)-dx
& = b x being by turns abscissz of the

laft corner of each rectsnslcz.
¥hen every dx- approaches zero, and n becomss
infinite, tue sum of this set of rectansless ap-—
proaches zs 2 limit the area under the curvs,
#e may indicate this limit by ths notation
LINIT SKZR f(x)-dx

By the help of the integral, [f{x)dx, we may
sO ‘transform +this sum as to actually perfornm
the addition and find the limit. The integral
[f(x)dx, is 2 new function of x, and we will
rzpresent it by the functional symbol F(x), thus

| Jf(x)dx = F{x)
then £ (x) Q F(x) = LI¢ £ x+dx) £{x)

Since a variaole and 1ts LIMIT dlffer oy an in—
finitesimal, we may write the last equation in
the follow1nu foru, & being the infinitesimal:,

t(x) = L_QA*'JX).M + o
f(x) dx = (x+dX) - F{x) + edx.

M

go that
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This result, uvssd as a transformation formula
for zach term of the sum in question, oy taking
x as =a, =asdx, =a+2dx, ... in succession dives

fla)-dx = 9(a+dx) =~ #(a) + g, dx
f(a+dz)-dx = #(a+2dx) — #(z+dx) + e,+dx
fla+2dx)dx = ¥(2+3dx) - F(a+2dx) + g, dx
o« e e ‘L.‘;tC.’ to
f(b~ix)dx = #(o) - F(b~dx) + gp-dx

On adding these, many izrms cancel and we have:
RZ0E(x)dx = F(o) - F(a) + dx{Sun of the e's}

tiow F(b)-F(a) is the definits integral FOf (x)dx
as for the dx{sum of the e's}, it cannot sxcaed
dx{n times the largest ¢}

or n*dx times {ths largest g}
or {o~a} timss {ths largest e},

since the lardest € is an infirnitesimal this
term disappears when we talte tne limit, Hence

Area = LINIT Zﬁig f(x) ax = @f f(x)-dx

Bach_term, f{x)dx, _in the sum_is ar infini-
tesimal, and the definibte intesdral is bthererore
the LIMIT of 2 SU¥ of a set of INFINITESIMALS,
each bexng of the type f{x)dx.

Before attempting -to apply this result to Lhe
determination of an area undzsr a curve it is
advisadble and often imperative to FLCI the part
of the <curve in gquestion with sufficient care
to maks sure that it does not

1, have a discontinuity,

2, dip ozlow the x—axis,

3. return urnder itself,

Lxample: 10 find how wmuct area liss in the 1st




quadrant ostwsen the curve y=x(1-x2) zad
axis.

I'ne curve cuts ths x-axis ab x=0
=nd x=1, lyins apove it conbinuous—
ly pbetwz2en tness points  The szrea
of this arch aust be givsn by

Jox(1-x®)dx =_3,(1-x2)2]13= 0 - (%)
Hence the area = one —quarter of the unit square

AREA® PRO3LEUS

braw a diagram for each problems Plot the
part of the curve required and shade the arean
to be found., Indicate the horizontal and verti-
cal scales used, and drawx a unit square or sone
properly labelled rectangular® areca (dotted) to
show the size of the area unit tn which Lhe re-

sults are expressed. *see page 37
1. Find the arsa of a pisce of a2 psrabola be-
tween y=/%, y=0, and x=1. 2/3 squarz units
2. #ind the area of one arch of the siausoid or
wave curve, y=sin(x). 2 squars vaits

3. Find by integration the arsa under the lins
2y=-x=3 from x=2 to x=3, and check the rssult oy
calculatins the same ar=a by the trapezoid rule
nanely, nalf the sum of the parallel sides mul-
tiplied by the perpsndicular distancs dbetwsen
them.

. Making use of the valuc given for tns inte-
gral JAT—x%.-4x on pese 77, find the area of the
first quadrant of the circle x®+y?=1.

&, Pind the area undser ths curve y2=x® from x=0
1o x=2, 37.2 square units
3. Find the aresa under the perabola y2'9px from
the origin to the vertical at x=18p. 72p%sq.un.
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7. Find the area bounded oy the hyperbola xy=6
thé x—axis and the verticals at z=1 and x=8.
10.75 square units
8. As t varies from t=1 tg t=3, the pair of pa-
rameter squations {§ = 3(3-t) gives a straight

line cutting off a cornsr of the first quadrant
Find the area of this piece by integratin

{the y of the curve? {the dx of the curve}
gxpressing poth factors in terms of the varia=
ble t and us.nog appropriate limits for t.

n

© square units
x = ain?e@

9. Given {y cos@, a parameter pair! as 5 in-
crsases fron-6=0 to 6= ﬂ/Z the point (x,y) will
trace 2 part of a paraoola from {0,1) to (1,0).

Find tns area under this part. 2/3 sq. uni ts

10, Find the area between the curve x+y®=10 and
the y=axis (N.B. not the x-axis as in the other
cases) from the horizontal at y=1 to where the
curve cuts the y-axis. 3.408 sqg.units.

If a curve, y=f(x),lies BELOW THE X-AXIS from
x¥2 to x=b, the formula f3f(x)dx gives the neg-
ative of the area oetween the curve and ths ax-—
is. Por in the theory on pades 81-84 it was as~
sumed that the dimensions of sach infinitesimal
strip were signless, whereas in this case the
vertical dimension of ezch, taken as y or f(x),
is negative. Hence in ths case of z2n area below
the xwaxis the formula will give a MINUS sign.

When we are concerned only with ACIUAL AREA
this mipus must be ignored. If the curve liss
partly above and partly below the x-axis, the
corresponding parts of the area are found sep—
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arately and combined as if each were signless.
Examplz: ““nd the actual ares ostween y=3x2-3
and the x—axis from x=0 to x=2.
Flotting the curve it is found
to lie bslow the x-axis frow x=0
tn x=1, snd aoove from x=1 to x=
% fhe two parts of the area are
therefore found separately from

: tne two intedrals
fo 3(x2-1) dx = =2
[2 3(x2-1) dx = +4

fhe total zreiz is thsrefore 244 or 8 sq. units.

11. Find the actuzl sisnlsss area between the x-
axis and y=4(x-1)(x-2) . 2/3 sg.units
12. Find the ectual area enclosed by the curve
y=x/(9-x?), the x-axis, and ths lines x=-1 and
x=2. ‘ .3528 sqg. units
13. Find the zrea between the curve %§+/y = /a
and the two coordinate axes. Y.a? sqg.units
14. Show that tae entire area bounded by the
curve y? = x2(a?-x?) is %,a? squarc units.

15. Pind the arez from x=0 to x2 under the

tatenary, —y/a(ex/a + o—x/2)
a? (e2-1)7/2¢ or 1.175a2 sq units,
16. Find the arsa between the curve y=2x®, the
y-axis and the horizontals 2t y=2 and y=4.
2.3727 sq.units

17. Find the arsa enclosed betwesn y=x*-18 and
the x=axis. 51.2 sq.units

18. Flnd the actual arees between the parabola
y = x?-8x+12, the x-zxis, and the verticals at
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x=1 and x=9. 12%, + 109, + 27 = 40 sq.units

19. Find the area of one arch of the curve y =
sin?x, the abscissas being plotted on a scale
of radians. 1.5708 sq.units

20. Find the area of a quadrant of a circle,

using ths parameter equations:, {x=a'sinw

(3ee 8 on page 38) y=a° cosp

21. Find the area of one loop of the drapn of
y2 = x2(x2-1). © 2/3 sq.units
22. Find the area between the paraoola y = ¥, x?
and the line y=x. 2%, sq. units
23, Find the arsa included between two parebo-—
las y2=2px and x2%=2py. Y, p? sa.units
24. FPind the area under the curve l-y=x®y from
x=0 to x=1. L7854 sqg.units

25. Find the area enclosed by the curve whose.
cquation is y=4x/(9—x?), the x—axis, and the
line x=2. ?lod(V ) or 1,175 sq.units

28. As t wvaries from t=I to t=5 the equation-
pair x = t%-t _

{y = 5t—~t? gives a parabolic curve cut-—
ting 2 pisce from the first quadrant. Find the
arca of this picce. (See 8 on page 83)

82%, sq. units

27. Find the actual signless area between the
curve y=x(x-1)(x-2)(x=3) and the x—axis.

49/30 sq.units

. How much area is enclosed by the x—axis and
curve y=(x-1)(x~4)? 4¥, sq.units
Find the actual amount of zrea enclosed 0oy
curve y=x(x-1)(x-2) and the x—axis.

30. find the area bounded by y=x/v1-x2, the x-

o w o
]

(G
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zxis, and a line (x = 1-g¢) very near to x=1,
1-/2e=e? or very nearly 1 sq.unit

g the area betwsen a2 curve
and its asymptote 1is =meant the
limit approached by a z2loscdbmo . _ T ====

area th one boundary parallel

to the asymptote and approacn-
ing it, or one bouriarJ erpon—
chalaw to it and reccaingd to

infinity. S ]

31. Find thz ersa under the curve xy?=1 frouw

the asymptote to bthe line x=1, 2 sq.units
32, Find tne arca under y = =% from x=0 to x=®
1 sq.unit
33, Pind the area . in the fourth qguadrant be-
tween the curve xyz (x-1)% and the axes.
4/3 sq.un
34, #ind the area under y=1/vx from x=0 to x=5é
10 sg.units
35, Show tnatbt the arza bstween a hyperbola nd

its asymptote is infinite,
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INTERPRETATION OF SLOPES AND AREAS

When a function is represented graphically it
is usual to employ the horizontal scale for the
CONTROL variable {or often for TIME). On these
diagrams it is not infrequently true that ei-
ther the SLOPE of the curve, or the AREA under
the curve also represents some physical quanti-
ty connected with +the one whose variation is
represented by the graph.

For example, consider a Time-Spsed diasranm:
that is,one in which time is laid off on ths
horizontal axis, and the corresponding spseds
plotted vertically. Both the time-intesral and
the tine-—lerivative of spsed =zre well known
qunatities: if a, v, s, t, repressnt accelera-
tion, spesd, distance, time, respsctiveély, they
obey the well xnown relations

a2 = dv/dt

(and since v=ds/dt) s = /[ v 4t
Comparing these witn the formulas for slope and
areéa on a diedram where t takes tne place of x,
and v of y, nemely with the Formulas

SLOP% = dy/dx = dv/dt

LRTA = [y dx = [v dt
we see that on a 1ims—Speed diagram the slope
of the curve represents the acceleration, while
the arsa wunder the curve repressnts distance
moved.

il

It is exceptional for both slope and aresa to
oe easily interpretable on the same diazgram. If
¥, S, T are three quantities of which the first
is the rate of increase of the second per unit
increase in the third, we have
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= d3/4T and S=/Fal
and tberefors the slope 1is interpretaole on a
T-5-~diasram, apd the sren on a I-F-diagram, the
T being control variable in both gases.

Many quentitiss used in physics ere capable
of being represented on a TWO WAY SCALE like
that of tne thsrmometsr. A certain value 1is
dedignatad as the ZERO, ths others being marked
fLUS or MINUS according 'to the way tney differ
fros z2ro. duch quantities are called 3SZALARS.

“Def. Scalars are SIGHN BEZARING NUMBERS or
quantitics represented by thenm.

Sxauwples sre:.

Jaalar: Plus: Mitaus: Zaro:
rlbitude un Down Sca-lovel
Tiac fature Fast Now
3pecid Torward 3ansk Stabloaary
viork Turnished Coasumed Inibtial =tate
Force Pull Push Helther
'yamo=roture davrm vold gnow+sali
Slop=» Jp=to-rt. Down-to-rt Lovel

"To this list we may now 3dd "arsa". WKz nave
seen tnat thz formula
‘ [ E(x) dx
gives area with a plus sign  when y=f(x) 1is
nolly abovs the x-axls, and ar2s with a minus
si3n when y=f(x) is wnolly velow the x-axis.
Congidersd =2s 2 purely 3izomstric matter, aree
should b2 taksn as sisnless (us on pade 37).
But an integrzl of the =zrea-giving sort, as:
[{Force}d{distance} or [{prassureid{volunc}
often repressnts an important physical scalar,
Such & quantibty changss in opposite ways ac~
cording as the intecdrsnd is elus or minus, that
is according as the sraoh is above or below the
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control veriable's axis. hence 1f we RETAIN I'HE
SIGNS GIVEN 8Y [THE DEFINITE INTEGRAL, the de-
finite integral will give directly the NET AREA
of . (area avove axis) — {area below axis)

and will therefore represent directly the NET
increass in the physical quantity reoresented
oy the arca—giving intedral.
For example: we may find the work done whan
stretcning a sprind whose natural lsnsth is 12
inenes, fron 2 lenitn of 1C inches to a lensth,
of 1% inches, if tie stiffness of the sprind is
gucin that the force rsquired is & lbs. per inch
of extension. I'ne force formula will bs 3(x-12)
los, x oeing tne varlaol@ length
of tne spring. [ne work™ formula

is tner=fore 0 é
i ~n 5 '
work= [13 8(x~12)dx =15 ft.los. |
.. \ LENGTH (o
Looking at this exasmple more —|T— % iz 15

closely we see that from x=10

to x=12 we need not do work, the

spring xtendlna itself, our work being wholly
negative, =f3 6(x 19)dx = -12-ft lbs., while to
furnishn }he extenblon from x=12 to x=lo re-—
qulres f1zo x~12)dx = +27 ft.lbs. Hence the 13
ft.idos is the N§{ amount to be done agaiast the
elastic force of tne,spring.

A few important relations, which are made use
of 1n suossequent oroblems, and which soould oe

*W2 caa got thg work formula by applyling tho
"7ull Process" (paie 21 for FLndxnd ne dif-
Porential of work Piavd 9 as dopendx*a on diz-
tance, X. ABCD: ? Pa) avarade force ia
the ianterval Bx. @' gwov% 7dx = exact forco in
terms of x. G: d{work) = orass formula)-dx. 30
upon intedgrating wgy have

Work = forae)-d(distaance)
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familiar to students of physics and calculus,
ar2 given in the first sight problems below.

PROBLEMS

In each of the first 8 <cases indicate on a
diagram which of the tihree quantities is to be
represented as horizontal coordinate and which
as the vertical coordinate, in order that the

third may be represented as a slope; and on a
second diagram show how to represent two of the

third

second diagram show how do represent two of the

guantities so that the other may be represented

by an area, On each diagram draw a grapk assum=~

ed to give the relation between the two quonti-

ties taken as coordinates. Indicale appropriate

untts in each case.

1. d(spesd)/d(tine) = acceleration.

. Work done = [ (force)-d{(distance).

. Rate of flow = d(volume ,poured out)/d(time).

. Specific Heat® = d(heat® used)/d(temperature—
rise produce ed).

. Work done = f(pressure)-d(volume).

. Altitude sained = f(slope) d(horiz. dist.).

. Distance moved = [(speed) d(time).

. d(work done) /d(time) = power.

9. The graph here shows y = the currsnt to the
rignt in a2 certain tube in cm./min. and x= time
zlapsed in minutes. What informa—

tion can be read off from the di-

agram as to:,

Direction of fiow

Change in magnitude of current

Net volume transferred up to end of each min?

*Moasure heat in caloriaes, sp.heat in Calories
par degrse centigrade.

QL ~Io> > W0




10. This grapn gives the speed of a body in mi.
per min. toward China when it falls down a hole
extending clear through the sarth. #hat infor-
pation can you read off as “0

to tne following quantitie
at intervals of ten minutes: 30
Sosed and direction.

> l'O W
Distance fravallaed,

Accaleration's direction.
sote: the 2rze of cach arch is 8000 units.

, 11. Inis diagram represents the force on a pis-
i ton as the piston is:pushed out
oy coampressad air. #ind direct—
ly from the ¢graph the work done
LN by the a2ir in pushing out the
! iua' b o, piston the 5 inchegzshqwn.

: 2% inch lbs.
L2. Tne bzaded linpe oh thils diagram represents
the salary arowtn of 2 certain - successful nan:
the plain line represants his peervear L
egnnual livins expenses. From [rigd ooy

R

| the diagram find his actual [-.i i gL Xe

| savings during ths years from [ =-3- N

| O to 80, and Dbis p R0
4G to o0, and his rate of g0 i 0

szlary increase zt 30. . Los Gt
S y ase ztb o T S

dAccount for all necative results in the follow-
ing prodblems:

13. The force necessary to thrust a 40 ft. pile
down into the water is (x/10 - 3.2) tons, x be-
ing the distance it has already deen thrust. To
just subrerde the sntire pile will require how
‘gucn work done? -4% ft.tons

14. Ttne upper end of 2 long spring is worked by
hand so as to give a ball attatcned to tne low-




er end a vertical acceleration which variss so
as to be (-32. + 30 sin 3nt) inches oer second
per second upward at the end of t ssconds. If
the ball starts from rest whza t=0, is it above
or oelow its startins point, and ncw fer, at
the end of one sscond? doout 2%, in.below

15. A tide miil pond contains 200,000 cu.ft. of
water at noon. 4 gate is then opensd admitting
the sea at the rate of

{1,000 cosl(#a + ¥, )radl}} cu.ft./hr.
where n 1s tie number of hours atter noon. How
fuil is tne pond at nine F.M. 197,000 cu.ft.

18. 4 ciston is acted on by three forces, G, I,
and A. 4 1Is the atwmospheric prsssure of 200 ibs
while G is a gas pressure, wnich varies as the
piston 1is moved, accordind to
the forrula G=3,000/(10-x) lobs.
x being the distance tne piston
has ©beern pushed in asainst the
gas pressure. F is tne force
nesded, so F = G ~ A. Calculats
the work Jdone oy I in increasind % from zero to
5 inches. -2420 ft.lbs




INTEGRATICN OF TABULATED FUNCTICHS

We have now considered the sgquivalent prob-
lsums of integration and area-~finding in the iwo
cases:

1. f(x) represented analytically,

2. f(x) represented graphically,

We will now consider the remaining case:

3. f(x) represented ia tabular form.
Here, as in finding the differential of a tabu-~
f lated function (pade 18-18), no such accuracy
is attainable as by analytical methods. In fact
the term APFRCXIMATE INTEGRATICN is appropriate
in this connection,

The points of the curve y=f(x) oeing thought
of as plotied (for equally separated values of
the argument, x) we can use 2s approximations
to the area under the curve

the sur of a set of .
Segments of

1 Rectangles 2 Trapezoids 3 parabolas
Rough Rule Trapezoidal zule  Siupson's Rule

T'he following symbols will-oe emnloysd:
Xe and xp are the limits, n toe nosber of in-
tervals between, Ax is the differcnce Dbetvicern
successive x's, and yo, ., ¥., *" yn are the
| successive values of the tabulated function.

1. ROUGH RULE: (Ihe proof is obvious.) Aresa =
[P yrdx = Axe (ya+9a+e " +yn)




2. TRAPEZOIDAL RULE:
Lﬁf ydx = Ax-{¥az¥n + j(other y's)}
For the trapezoids have areas (see 3,pade 85)
equal to

0% (Yorye), 28x(y1+¥2 )4 30X (V2+Va), ,38%(¥n_2*¥n)
3. SIMFSCU'S RULE: 55; y*dx =
%}{yo+yn + 4-Z{other even y's] + 2*¥[odd y's}}.

The range from the first x to the last x
must be divided into an EVEN number of

ual parts s0 as to dive an odd numbor.
? values of y, from yo, Lo yxy inclusive,

Proof: Consider first the area frow x = -v to
x = +v under a parabola having an equation of
the form ' s

y = A + 2Bx + 3Cx*. . P
This area nmust be equal to ™. I o
LY (a+2Bx+3Cx 2)dx TR R SRR
= Ax + Bx?%2 + C ’)f_g ""f; "
= 2V(A+CV2) ™~ ~
Mow if we represent the values of y 2t X = v,

x=0, and x = +v, by y', y, and y" rsso°ct1vely,

we find that  giro 4 - 2By + 30v?2
4y = 4A
"= A+ 2Bv + 30v?
Hznce ylAy+y" = 8A + 60v2 = B(A+Cv %)

and it is clear that the area uons1der°d is v/3
times this expression, ¥e <can now apply the
rule  (%%v)(y'+4y+y") tc successive pairs of
slices of an area cubl up intc any numrber of
pDoUBLE PANILS, (or an #VEN numdber of panels),
each of width Ax = v, Represent the y', y, y"

first 0y Yo, Y1, Y2, Lhen oy ys, ¥a, V4, and so
on up Lo Yp-2, Yn~1, Yn. The total area of all
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these doudble panels is thus found to oe

Ax[Yo+4yatys
-3 +yotdYatys
k +ty.tdystye olic. to
.JJ,"J+yn—2
+Ynotdyp 1ty

from which the given rule follows by addition.

When a function is given in tabular form we
have no recourse but to use onz of these ap-
proxizats intedration rulss,

When the function is given 0y a grapnh the
planizetsr may oe used to find the area, but it
is sometiwxss more convanient to measure a set
of ordinates and use Siumpson's Rule.

fven winen the function is ¢iven analytically,
the difficulty of intedration way be so great
that it is desirable to calculate a set of val-
ues of the function and obtain the integral oy
one of these approximate mcthods,

For example: To find f,*2 e*%dx,
Divide the range, O to 1.2, into 6 equal parts,

so that Ax = .2 and therg are 7 ordinates.
labulate: x %2 CEo produsts
0.0 .0 1.000 x1i= 1. 000
o2 »Ud 1,081 x¢g= 4,164
u4 016 10 17‘2 X2= 20 348
.8 .36 1.433 x1i= 3.732
.8 €4 1.897 x2= 3.7¢
1.0 1.00 2.718 x4= 10.872
1.2 1.44 4,221 x1= 4,221
3)22.131
Ax = .2
Intedral = 2.1420

These agpproximate methods dgive only definite
intedrals, ‘If a TABLE of values is calculated
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giving the integral from x = ¢ (z2ny coavenisnt
constant) to x = v (a variaols, the arsument of
the table) this table will serve the same pur—
pose as the indefinite intesral. In using such
a table for calculating definite integrals with
lower limits other than ¢, maks use of the ob-
vious relation -

Fg=12 - I8

AFPROXIMATE INTEGRATIONS

2
1. Calculate [3® e*"dx by the trapezoidal rule,
using six trapeszoids.

2. Calculate fﬁz exzdx, first using six circum=-
scribed rsctangles, and second, using six in-—
scridbed rectangles, thus cotaining limits be-
tween which the exact valuss gqust lie.

3. Calculate [{log tan x}ix bstween the linits
/4 and w3, using Simpson's Rule with five
double panels. L0305

4., Find ths area of a quadrant of the circle

" x%+y2=25 by the trapezoidal ruls, using 5 trep-

ezoids, and show by a diagram why the result,
18.8711, should be so much too small,

5, Find f:?{logex}dx, first oy Simpson's Rule,
using three double panels (7 ordinatss), and
second by integration (see page 73).
. 12.033, zither way
e dx +.,5 _dx
8. Find [ 1 T4x2 and J_ 5 T4+.2 by means of the

table:.
v = .0 il .2, .3 A
0. .0998 .1975 -.2915 .380c .4337

cn

1]

dx
v

7. & common logarithm table can be resgarded
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as a taole of values of the definite integral

ff +4343 dx ,(see page 60). Flndj9'§6 A343 dx
X 4.83 X

from such a table. Then verify by integrating
and using Wapierian logarithaus.

Compute [5°° f(x) ax for each of the following
tabulated fumctiors by the rule indicated.
10, 11.

80 oo
Simpson's Trapezoidal Rough rule- Trapezoidal
x f£{x) x f(x) x fix) « fix)
0 1 Q0 2,803 2.0 12 2 16.8
2 3 3 4.885 1.5 22 2 14.2
4 6 8 5.964 3.0 29 $ 9.1
8 10 9 %7.530 4.5 38 8 1.
3 13 12 2.£283 3.0 34 3 -«10.1
10 21 7.5 32 10 <24.2
12 28 9.0 27 11 -32.4
10.5 19 12 -41.3
12. O 3

12. Calculate ® approximately by applying Simp-
son's rule (using three double pane}s% to the
known integral: w/4 = arctan(l) = o dx/(1+x?)

3.1420

13, Show that if sach double panel be trisected
the system of rectangles and trap-
«:f;i-m ezoids shown has the precise area

: X siven for the curve by Simpson's

rule. The rectangle has the height
of tne middle ordinate of the pan-—
: : 31, and the adjacent trapezoids
- ax=r nave 28 their parallel sides the
height of the rectangls and a sile ordinate.

14. Calculate log,2 by applying Simpson's rule

to 2 4x/x, using 5 double panels. .82315
2 .

15. Calculate [ e™* dx by trapezoidal ruls. Use

Ax=.2 up to x=2, and Ax=.5 frgm there on. Carry

all work to 4 decimal places. (ses p.101) .3333

O
bbby

|
|
z




AVERAGE VALUES

In the second approach to the area formula
(pages 82-84) it was shown that the definite

integral ;

integra S8 £ dx

is the LIMIT approached by the following SUM:
fla)dx + f(az)dx + f(a3)dx * eovlciss #f{a,)dx

where ea%g (a) is (dx+the preceeding a) and dx
is one-n part of the whole range, x=a to x=b,
so that n*dx = b—a, and z2s the infinitesimal,
dx, approaches zero, n becomes infinite.

If we wish to find the AVERACGE VALUE of a set
of quantities, we add them up and divide by
their number.

If we wish to get the average value of a VA-
RIABLE, f{x), as x increases from x=a to x=b,
the natural way to go zbout it is to divide tne
RANGE from x=a to x=b into n equal parts, and
find f(x) for each point of division, and then
to add tnese values and divide by n. If n in-
creases indefinitely, the average so found will
be a better and better representation of the
average of ALL the values of the continuously
changing f(x). Hence the average sought is best
represented by the LIMIT of

[7(a) + flxy) + eon # f(x,))] +n

Multiply both the long bracket and its divisor

by the differential of the rande, dx. The de-

nominator becomes the constant (b-a), and the
*Jote to 15 on pagoe 100: Beyond x=3. the add-

ition of moro terms does not affect the £ifth
place of decimals. .B36223+ is the true value.




numerator -becomes the sum whose LIMIT is ths de-
finite intesral f°f(x)dx, and we have the re-

sult that the
8 £(x)dx

b - a

For example - The averades value from =x=1 to

x=5 of 8{x*-x) is 3
2 08(xRex)ax  JP3(x®%-x)dx 178
LIN— 5% =2 5 -1 - 4 = 44 i

If a quantity may be considered as a function
of either of two control variables, there will
be two ways of taking an averadgs z2ccording to
which control variaole deternines the equal in-
tarvals.

Thus the speed of a falling body is given by
either formula, v=32t or V=8/s, Con51der the
first second or while it it falling 16 ft. For
this part of the fall we may compute either:,

The TIME-average, when we take spseds at
equal intsrvals of time, using the quotiesnt

[z32t]+n, and multiply numerator and denoanin-

ator by it oefore taking ths limit, or—

The 3FACE-average, when we teks spesis at
egual intervals d* distafice, using the quoti-
2ul (28/s)+n, and multiplying numerator aud
denominator by ds besfors: taking ths lialt.

Average.value of f(x) =

cROBLIENS
1. #ind . toe sverass velus of [x+2x®] as the x
. \ 3 368
varies from zero to two. 3.3886

2. Pind the average distance of =21l points on =

~

piecs of streigat linz from one 2nd of to: line.
3. Ffind the ayerass cross section of a circular a
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cone. - ¥, Base.

4. Pind the average of the ordinates of a semi-
circle considering them as drawn at equal in-

‘tervals around the curved perimeter. .3386xRad

§. Find the averade of the ordinates of a sami-
circle considering tihem as drawn at equal in-
tervals along the diameter. .7854xRad.
6. Pind the time-average of the spzed of a fal-
ling body in the first two seconds. 32 ft/sec.
7. Find the space-avsrage of th: speet of 2
falling body in the first 64 ft. 42.6 ft/sec

8. FPind the time-—averagse of the kinetic energy
{Kin.En.=¥,{speed)?xmass] in ths {irst two sse—

‘onds for a freely falling one—pound weignt.

406,86 ft.lbs

O. Find the space-average of the kinetic energy
(see 8 above) of a freely falling ons-pound wt.
in the first 64 ft. 1024 ft. los.

10. Pind the average area of a set of parallel
small circles cut from one sphers by planes at
infinitesimal equal distances. % of gt. circle

Find the average value of the eniries in each
of the tables indicated for the ronge indicated
and in each case ascertain the "representative

- argument¥, that is the argument corresronding

to the average value of the funciion.

Table Ranio Averade Rep.Ard.
11. DLod {x) x=1 to %=10 1. 558 do 13
12, /% x=0 Lo x=100 6 2/3 444
13. sin(x) x=0 to x=90° . 3388 33.°
14. 1/x x=1 o x=1C . 9533 5. 903
15, x* x=0 to x=1000 10% 3 377.8
18, lo3jglx) . x=1 to x=10 877 4.5




SUMMATION ELEMENTS

Def. An Element is one of a set of parts into
which a quantity is divided.

Let the subdivision of the guantity be inde-
finitely continued, and the elements become in-
finitesimal.

Consider the isoscesles triandle shown, and
let it Dbe divided up into elements by slicing
it at equal distances parallel to the base.

Let x cm. be the distance of any particular
slice from the vertex, and let A sg.cm. be the
area of the part of the triangle above it. Then

t AA will be the area of the 1
f infinitesimal strip Jjust v;:
* veloy. There are three
e L ways of getting at an ex- ol A&\
“— 4cn—> pression for the area AA.

ist. AA is a trapezoid:, its upper base = ¥x,
its lower base = ¥, {(x+dx) and its altitude = dx.
Tnerefore its arsa is sxactly

Yox dx + %/ (dx)2.

2nd. A4 can be converted into a parallelogranm
by cutting off a three cornered piece —
whnich has two infinitesimal dimensions YN
The arsa of the parallelogram is %x-dx. Hence
the area of the element A4 is equal to

Y,x-dx + an INFINITESIMAL OF HIGHER ORDER.

3rd. AA is equivalent to a2 rectangle of the
sare width, dx, as the element, and with a
length equal to the AVERAGE LENGTH of the ele-
ment. We do not inguire more exactly what this
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average is, but note that it must lie between
the extre?e lengths, ¥x and % (x+dx), of the
element. It therefore differs from /oA )\ 1dx
¥3x by an infinitesimal of FIRST or-— . \
dzr, and hence the product of ¥x [=2a7] lax
oy dx must differ from the infinitesimal area
(= width x average length) by an INFINITESIMAL
OF HIGHER ORDER. This gives the same expression
for AA as the one in the 2nd. method.

The first of these three methods may seem to
be wmore accurate than the others. It is so pro—
vided we are goind to take the SUM of the ele-
ments by the process of actual addition.

But we can prove that precisely the same fi-
nal result is obtained by using the apparently
less accurate (but simpler) result found in the
2nd. and 3rd. methods, and taking, not the sum
merely, but the LIMIT OF THE SUM. This process
(see page 84) we can carry out by means of a
definite integral.

The LIMIT OF A SUM of a set of IRFINITESIMALS
has this important property.

The LINIT +is not alitered bty dropping fronm
each infinitesimal a term which is an infini-
tesimal of higher order.

Proof. Let « be one of a set of infinitesimals
and let 8 be an infinitesimal of higher order.
Then the limit of B/a is zero {(pages 15-18). We
have to prove that the limits of the sums of

[the a's] and {the a's + the B'sl
are the same. The only difference between these
sums 1s that the second one contains

$[B], (=the sum of the B's), ‘
the sum of the terms of higher order. We may
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transform each term of £[3] by multiplying and
dividine by the corresponding «, so that it be-

comes L0 (870) ]

The (3/a) fractions have various vaiues: let G
represent the zreatest”of thess. Since (8/x)
has the limit zesro, G will also have the limit
zzro. Ibe sum we ara now speaking of. 2[(8/1)-ql,
must be lsss tnan '

[G )

fFut this equals - Ge2lal

which approacass zero as a limit because G does
so, while Z{a} remains finite as it approachss
its limit. \

The differencs betwesn the two original sums,
Slal and %(8], was this sum, 2{8] = G'S{a] and
ws see that tlls differzsnce dlsappears when we
pass to the limit.

ihe practical importance of this bit of theo-
ry is as follows:, when we must find the sxact
sum of a set of elomants, and the exact fornula
for tns typlcal elensnt is either
rather complicated,
or ditficult to ootaln,
w3 czn use a sinmpler foraula for the element,
fouvnd eithsr:,
lst. By dropping terms involving infinites-
imals of highsr order from the exact formula.
2nd. By trimming from the element pisces
which have a grsater number of infinitesimal
dimensions than the element itself, so as to
det a rectangls or other simply measursd fis-
ure.,
3rd. 3y ignoring infinitssimel variations in
any tinits dlmunelon, and using its simplest
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~expression as if it were an average value of
the dimension.

Thusr if the surface of a cone, semi-vertical
angle ¢, 1is divided into strips by
slices parallel to the base, we can lﬁfhéx
show that the exact formules for the “Ff—=
area of a tvoical strip is o ,
nesin(p) [2x-dx + (dx)?] Rk
But we can get a simpler and mores workaovle ex—
pression in either of the three ways:,
I1st. By dropping the tsrm involving (dx)Z2.
2nd. By thinking of the strip as flsttened
out and then a three cornered piece
trimmed from one end, so that it
will have a uniform lesndth, 2nx-sinp
thruout its whole width, dx.
3rd. By ignoring the difference between the
inner and outer lonZ curved boundaries, and
getting the area as if 2nx'sin(p) and dx wsre
the average length and the width of the strip
Bach of these three methods gdives the simple
expression, 2nx'sin(p):-dx for the elementary
area,

T,
vt

4

PROBLEMS

1. From the fact that the speed of 2 falling
body is 32t ft/sec at the end of t sec., find
how far it falls in dt sec., supposing that
during this infinitesimal interval! the speed
remains constant at the value it had! 1lst, at
the beginning of the interval:  2nd, at the end
of the interval. How do these infinitesimal
distances differ?

2. Find the exact area of a ring between con-
centric circles whose radii are x and x+dx. Re-
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jecting infinitesimals of second order, find
the differential representing this area.

3. A regular pyramid has a square base, Zcmx2cm
and is 3cm high. A similar pyramid is cut from
it by a. plane parallel to the base and x cn
from the vertex. Find the exact volume of the
slice betwsen two such planes at distances x
and x+dx cm from the vertex. By rejecting all
infinitesimals of higher order than first, ob-
tain the differential of the volume of the pyr-
amid whose altitude is the variable x cn.

4., What is the simplest differential expression
for the volume betwsen two concentric spheres
whose radii are r and r+dr.

5. What are the exact areas of the
sectors inscribed in and circum-
scribed about a wedde shaped slice
of a polar curve, the two radius-
vectors of the slice being p and &
p*Ap, and its angle being d3. Droppi
order infinitesimals obtain differential area.

6. A sphere, radius 10 ft., has a variable den-
sity which varies (see pages 67-88) so as to be
at every point proportional to the distance of
that point from the center, and at the surface
the density is § lbs/cu.ft. What would be the
exact mass of a shell between concentric spher-
ical surfaces of radii x and x+dx ft., if thru-
out this shell the density were constant and

equal to what it is: 1st, at its inner surface?
2nd, at its outer surface? From these two ex-
pressions find the first order differential of
mass.

7. Find the simplest differential formula for a

t
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an ¢clement of volume of a cone divided up by a
set of planes perpendicular to the axis, using
x to represent the distance of such 2 plane
from the vertex.

5. What is the differential of the
area of a right triangle with one

angle equal to 30° and the adjacent N AA@
side x" lond. How does it differ ;
fror the increment of this area? R R

9. The work done by a CONSTANI force pushing in
the direction of motion is the product of the
force and the distance moved. A force acting on
a particle varies inversely as the distance, x
em., from & fixed point, being 4 lbs when x=1.
Ignoring infinitesimals of second order, find
the work done in increasing the distance from
the fixed point from x cm ko x+dx cm.

10. Find limits between which the work must lie
which is done during an infinitesimal displace-
ment of a particle by a force proportional to
the distance it is moved, x; the proportional-
ity factor being represented by the constant, k.

11. A board is loaded so that the load per sq.
inch increases uniformly from one A
end to the other, obeing zero at EEEEEE[:E[:}?
cne end and 2 lbs, per sq.in., at «—— /0’0" "—
the other. f'ind a differential expression for
the load on a cross ways strip, x ft. from one
end and dx ft. wide,.

12. If A(v) 1is the area described on page 82,
hov does y+dv differ from an clement of this
area wnen 1t is cut into vertical strips?
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SUMMAI'TON PROBLEMS

Before undertaking a summation problem, DRAY
4 DIAGRAM .showing the diven figurs with all
necessary dimensions, and showing how it is to
bz cut up into elewments.

Show with especial care —— on a separate dia-
grac, if necsssary— one element of non-special
cuaracter, a "“SAMPLE ELEMENT", neither first,
last or mwiddle, nor otherwise possessed of any
peculiar properties not sharsd by all elements.

Represent oy an appropriate letter the COOR-
DINATH used to locate the element, that is its
distance (or ansle) measured from some fixed
point (or direction).

FPind all variable dimensions in terms of this
coordinate, and indicate them by their formulas
on the diadram.

As upper and lower limits take the extreme
values of the coordinate when all elements are
considered in order.

Thus to find the area of one loop of the po—
lacv curvs, ¢ = sin(@3):
: Divide the loop
#0 iito fan shaped
pieces. Use angle
3 to locate one.
From a sample ele—

Showing all i e " ment cut off a 3-
2 imen
the elements samgxélgﬁgmggt cornered piece 0¥

an arc so as to
leave as area elecment a sector of a circle, ra-

dius=p=sin{23), and arc=p-dd=5in(23)dd. Its
area is Y,pd6'p = ¥,s5in226-d9, and the eclements
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have anglss ranging from O to w2 radians. So
K} . .
area = [ ® ¥,5in®(23)d3 = .3927 units.

o

A VOLUME OF REVOLUTION should be divided into
elements by planes perpendicular to the axis,
cr oy concentric cylindrical surfaces about the
same axis. T'hus a sphere of radius=a may be cut

into aithsr

alines Cylindrical shells
Coord., v = dlgtanoe Zoord., z = radiua of

Fooa Lo inner surface
s“dﬁrd slioe 83 clir- Redard element as shact
nylg f radiug = oagth =:liz, width =
Jia '?(“”ﬁe 5343 ®V(a®=z), thickaegg =
Av. volnﬂx- axwy® dv z, vol. inw/ia —z~?3z

2LHZ

Ihe arsa BEIW&EEN TWO USURVES may be found oy
subtracting one area f:om another, or (prefer-
ably for some purposes) by the "DIRECT method”

Thus to find the area bestween the
parabola y2=x zand the line y=x: e
solve simultaneously to find whers
they cut — at (0,0) and (1,1).
into horizontal stripgs. Use y as =
coordinate of a sample strip. Then
its width is dy, and its length is

(x of parabo;a) (x ot line) or (v% - y)
The element's zrea is (y?-y)dy, ths limits for
y are U and 1. and the area is [ (y*-y)dy = 1/8
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When the x and y of a curve are given in
terms of a third variable (PARAMETER), use the
parateter as a coordinate of the element zp4
get all dimensions in terms of it. (See problem
8 on page 36).

GEOMETRICAL SUMMATION PROBLEMS

In finding areas and volumes by Sum-Limits do
the work in this order:
1. Draw a DIAGRAN, showing given dimensions.
2, Indicate method of CUTTING into elements.
3¢ Indicate COORDINATE of sample element.
4o Indicate LDISENSIONS of sample element.
3¢ Hrite PRODUCT rebresenting sample element,
6. Put on INTEGRAL SIGKN and LINITS.
7e  WORY OQUT the integration.
8¢ SUBSTITUTE Limits.
L., ¥ind tne volume of a cylinder by intesration
takindg cylindrical shells 2s zlements.

-~

2. Find the area betwsen y=2x? and y2%=4x, not
oy subtracting arsas, but by the direct method.
2/3 sq.units.
3. Find the whole arsa enclosed by p=3'sin 9 by
intedration, using fan shaped elsments. oOn/4
4. Find toe voluue of 2 sphere by iategration,
using cylindrical shells zs slexents.
5 to 10. 4 nzrapolic sesmsnt is boundsd by the
curve y2?=13x, the verticsl st x=2, and the axis
of x. ¥ind the volume gsmersted if it revolves:.

5. About the lins x=2. 40. cu.units.
4. Aooutbt ths x-exis 113. cu.units,
7. Adout the lins y=8. 138, cu.units.
3. About the y-axis 30. cu.units.,

2. About the line x=10. 442, cu.units.
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1C. About the line y=10,. 382, cu.units

11. ¥ind the arsa between the parabola xy=4 and

the line x+y=5, not by subtraction of areas but
by the dirset method. 1.9585 sq.units
12. A sol®d is iascribed in 2 sphere, touching
' it alond twec great circles whose

olanes are perpendicular. All

sections perpendicular to these

. olenes are squares. Find the
\\V’ volure wusing as elements the
\; slices between the sguares.

8R%/3 cu. units

13. Find the area of the cardioid, p = l+cos 3.

14. A& piece of the first quadrant is cut off by

¥ 2
the curve whoss parametsr squations are {§~g_;1

as §L incrsases from t=1 to t= Find by inte~
orat1on tne volume generated 25 this piece of
arzz revolves about the x-axis. 5w/8 cu.un.

15. Find the volume of a sphers, using parallel
discs as eslements.

18. Find the volume of a conoid, a fidure whose
pase is circle and 2ll sections

perpendicular to e certain dia-
meter of the base are 1isoscles

triangles with the sawe altitude,
equal to h units. ma?h/2 cu.un.
17. Find the arsa between the two loops® of the
Limagon, 2 = a{l + 2'cos 3). 3na? sqg.units.
183. Find the volume of a cons, cutting it into
clsments by planes parallsl to the base.

*¥Note that & and 180°+8 give corresponding
poinbts oan ths innsr and outer loops.
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19. Find the volume of 2 cone by integration,
cutting it into elements Dby cylindrical sur-
faces co-axial with the cone.

20. Find the area bounded by o = Asecd and the

lines 8=0, and 8=45° using fan-shaped elements.

21. Find the whole area enclosed by p = Asin®,
using fan-shaped elements.

22. Find the whole volume denerated by revolv—

ing the curve {g:ggggg about the y-axis, using

discs 2s slsuents. 24n cu. units

23. How much liquid can reéemain in a cylindrical
' cup of radius R units and height
H units when the cup is tipped so
thet the surface of the liguid
follows &2 diameter of the circu-
ler bottom. Use as elements ssc—
tions mede by planes perpendicu-
lar to the pottom of the cup and
to the surface of the licuid. 2HR243 cu.units
Z24. Find tue area cetwssn tne parsitola x® = 4ay
and the witch (x%+4a?)y = 33%,
(n=%,)22% = 4.95 3% cu.units.
5. Pind the volume generated by 2 circle rs—
volving aboul one of its tangents. 2m%R® cu.un.
6. Find how much area is cut fromw the first
guzdrant oy tne curve (x+1)2y = 3-2x-x?.
: 1 sq. unit.
27. &inl thg area swept over oy the radius vee—
tor of 0=e%, a spiral of 3erncuilli, s the
andle B chandes from 0° to 330°.

28. ¥ind the voluwe senerated by revolving
about ¢ithor coordinzte axis the part of the
second gquadrent cut off by the line 2x-3y=8,




29. A solid is inscribed in a cone whose height
is H units, tns base beind a circle of radius R
units. All the sections perpen-
dicular to one diazetsr
base are isosceles

Find its volunme.

.9042 HRZ cu.units,
30. Fipd the volume generated if the area de-—
scribed in 14 on page 113 revolves agout the Y-
327 sq.units
3L. Find the area between the circles p=a‘sin 6

axis.

and 0 = a‘cos 6, using as element vertical slices
and expressing their dimensions in terms of 6.
.8708 sqg.units
32. Find the area generated by the radius vector
of the spiral of Archimedes, p=a8, as the angle
mokes 1its first complete revolution.
33. Pind the aréa of the Cardioid, p=A-versing.
LMAZ units
24 Pind the volume of a Torus, or anchor-rind,

a figure generated by revolv-
ing a circle about a line out-.
side ths circle but in its
plane. Let * bc tune radius of
the revolving circle and let R
be the radius of the orbit of
its center. “2n2ARE,

35. Solve 23 on page 114 cuttine fug figurs 15~
to elements by planes perpend}cular to tpa
tom of the cup and perpendicular to tos sec—

tions used in 23.

of the
triandgles.

¥Yaa?n®

ot~
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SUMMATIONS HOT SIMFLY GEOMETRICAL. Wany quan—-
titiss, such as nass, kinetic enerdy, amoments,
etc., cannot be calculated at once for a whole
body, because some necessary factor varies in
value in different parts of the body. We then
cut the body into GEOMETRICAL ELIMENTS, (slices,
segments,- cylindrical or spherical shells,etc.)
in such a way that in each element there shall

e only an INFINITESIVAL VARIATION OF THE FAC-
IOR in question.

For a representative geometrical element (the
"sample' element) calculate . the corresponding
element of mass, kinetic energy, moment, or
whatever is desired. Integration between limits
then gives the exact total for the whole body.

In formulating elements of the following
quentities, the factors indicated must be put
vogether, each one expressed in terms of the
coordinate which locates the GEOMETRICAL FLE-
MENT within which sach factor suffers only in-
finitesimal variations:,

MASS:, (density®)x(geometrical element)
LOAD on an area:. (load per sq.unit)x(area elex.)
FORCE on an area: (pressure per sg.unit)x(area—
element)
DISTANCE moved:. (speed)x(element of time)
#ORK done: (force)x(element of distance)

or: (power)x(element of time)
KIJETIC ENERGY: ¥, (square of speed)x{density)x

(geometrical element)

MOMENT of force about an axis: (force per sg.
unit)x (geom.slement )x (lever arm®
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MOMENT of an arsa about an axis: (area elsment)
x (lever arum*

2ND MOMENT, or AOMENT OF INERTIA of 2 line, an
area, a voluze, or 2 mass: (element of line
area, volume or mass)x(SQUARE of lever arm**¥)

HYDROSTATIC FORC%Z on an agea:‘(element of area)
x{depth)x(water factor "~

ATTRéCTION in a given direction: (mass attract-
ed¥*¥¥)x (element of attracting mass)x (recip-
rocal of square of distance)x(resglving co—
sine)x(sravitational constant®*¥**¥

No%ea.

Lu.Bce pades 87.63 if the density varies.,

A . <

"Lever arm™ i3 the perpesdicular distance

Kk from the 2lement to tha axlis.

"Water factor! may be represcated by"i".It
is the weidht of a cpbic unit of water. One
cubuc foot weidhs 623 pounds.
If "attraction at a point™ is o
anit masy is suppose to be s
that polnt.

"Gravabatiinal cosstaat" is the Foroce of
attraction between unit masses separated
by 2 2n1t dizstance. £t may be rvepresented
by "k". Itz valuoc in the C38 systéea is

84845x10~2° dynes.

C kR kK
alled for, a
ltuated at

K kKK

APPLICATILINS OF SUMMATION.

In these problems follow the directions given
on page 112,

1. Find the mass of a sphers whose density va-
ries as the cude of tne distance from the cen-

L

ter, deins 3 sms/cu.cm. 2t the surface, the rad-
ius being 3 cm. Use <conzentric spher. shells
as elements. Why not discs or cylindrical ele-

ments as on page 1117 144w grams
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2. A parabolic segment cut by x=4 from v®=9x
has what moment about the straight line part of
its boundary? 25.5 units

3. How much work 1is done in pulling out a
spring from its natural length, 10 inches, to
twice that length, if the force increases 2/3
pounds for each inch of extension. As element
of work done use the work done in lengthening
the spring from x to x+dx iaches. 33% in. lbs

4, The density of a rod varies rrom point to
point so that at a distance of x cm from one
end it is [x®+(L~x)?1/100 grs.per cu.cm. Calcu-
late its mass, if the lensth, L, is 3 cm. =and
the cross ssction is 2 sq cm. Nearly 24 g¢ans
5. %Wnen a mine was adandoned, it was costing SC
dollars per foot of depth to dig it dseper. It
the cost will increass 2. the 372 power of tho
deptn, what will Dbz th: cosl of decpening it
200 feet further than tne 30C ft.depth at which
it was abandoned? About #2&,00C
6. A wire in the iorae of = circuls- arc exerts
what attirzction a2t the center if tne wire has a
mass of ¥4 units and 2 valius of R units, and
subtends an zngle of ¢ radisns at the center?
itk/**9)sin (3/2) forcz units
7. The trizndle cut frow the First quadrant by
the line y+3x=5 has z uniform density of thres
anits per sg. unit. Vhat is its kinetic energy
if it rsvolves avpout the line x=4 at a rate of
4 redians per secondr 1632 units.
5. A rectandle 3 ft hish is submergsd in a ver-
tical position-so that its top, A ft long, is C
ft. nelow tiae watz surfacs, Find the total
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hydrostatic force exerted oy the water on one

side of it. ABN (c+%,B) units
9. Arod L ft long has a uniform density of K
gms. per linear cm. A unit mass is situ- 8

ated on a perpendicular at one end of
the rod, at a distance ¢ ft from the rod
Find taat component of the attractiow
which 1s parallel to the rod. :
(k/c)versin{(/APB)
10, Find the nass of a hemisphere of radius oft
if its density wvaries directly as the distance
from its bounding plane, being one pcund per cu
ft at tue mosi remote point. Ibs.
11. & oparabolic =2rch, 5 ft. thick
at the crown and 20 [t long weighs
(5 + x*/80) tons per running foot
at a sasction x 't from ths keystone
Find total weisnt of masonry. 9%, nunarsu tons.
12. Find tns cass of a cone if the density va—
ries a3 the distance from the basz, beind unity
at the vertex. Bh/12 units.
13, Find the moment of inertia of a Yrindstone,
density k units per cu. unit, radius a units
and thickness b units, whose mass, M, is there-
fore, ma%bk, about the axis on which the stone
should turn. na*bk or Ma%/2
14. Find ths moment of inertia of a spnere of
radivs R} and density k about a diameter, using
as elemsnts discs perpendicular to the axis,
and mezking use of tne result obtained in prob—
lem 13 avove for tane momsnt of inertia of such
2 disc. BnR®/15

15. The force with which the sun pulls on 2 one

P & A

- BQmn -
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pound mass is (3/2)x10° tons divided by the
square of the number of miles between their
centers., Find the work done by the solar at-—
gtraction in pulling a one pound meteorite from
the orpit of Neptune, padius 28x10% wmiles to
the surface of the sun, radius 43x10* miles.
About 3500 mile-tons

18. Find the kinetic energy of a thin rod re-
volving about an axis thru one end, Length of
rod A cm., speed w radians per sec., mass m gums.

1/BmA2w2
17. Find the attraction of the rod in problemn
no.18 above upon a unit mass situwated C cm fron
one end of the rod and in the line of the rod
produced. m+(c®+4c) units

18. A unit mass is situated in the axis
of 2 ecircular disc and ¢ cm, from its
center, The disc has a radius of R cm,,
and a mass of G ¢gms per sq.cm. Find thc \&/
attraction. enG-versin O

19. With the help of 18 find the attracticn of
an infinite plane, dersity G units per sq. unit
upon a point C units from it. 2nG force units

20. Find the woment of insrtia of a semicircle
soout its bounding diameter if the density of

the matter distributed over the area varies in—

versely as the distance from this diameter.

21. Find the total hydrostatic force on a ver-
tically submerged circle, radius R, 1its center

being ¢ ft below the water surface, nR2ch
22. Find the moment of inertia of a rectangular
area about one side, a3%p/3

23, Find the wmoment of inertia of a rectangle

k)

-~
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about a line thru the center parallel to cne
side. a®o+12

24. A parabolic segment cut from ay=x? by y=d
is submerged with its straight side up, level,
and ¢ ft below the water surface. Find the to-
tal hydrostatic force acting on one side of it.

25. A ham weighing 12 lbs. is placed on the
platform of a spring balance which sinks 2 in.
thereby. Note that the pcinter indicates on the
dial the variation of the force as the platform
goes down, and computs the work done by the ham
in thus weighing itself, 1 ft.lb

26. Find the mass of a stick 1 inch square and
a yard long, if its density varies as the
square root of the distance from one end, being
1/30 lb.per cu., inch at the heavy end. 4/5 lb.

27. Find the moment of inertia of a slim uni-
form rod about a perpendicular bisector. Ma?+12

28. Take the * weight of 2 cu.ft, of stone as W
lbs, If each piece has to be raised from the
ground to its final position, what is the work
done in raising into place all the stone for a
square pyramid, 100 ft on a side and 120 ft.
high, 12Wx10°® ft.lbs.

29. A solution is a cylindrical jar, 10 cm deep
and 15 sq.cm cross section, settles so that the
density varies, being x%+(x+1) ¢m./cu.cn. at a
depth of x cm below the surface of the liguid.
Find the whole mass of the solution. 836 das.

30. The mass of a dgrindstone .is 10 lbs, its
radius is 1 ft, and it makes 2 turns psr sec.
Pind its kinetic energy. 800 ft.los,
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lO—LOGARIfHMS
N O 1 2
1 000 041 07
5 301 322 34
3 477 4o1 50
4 802 613 82
5 399 703 71
3 793 735 73
7 345 851 85
38 303 933 31
5 954 533 35

o~LOGARITHMS, ba
N .0 .1
1. 0.00 10
3. 0.6 74
s 1.10 13
4. 1.39 41
5. 1.61 &3
3 1.7 31
7. 1.93 96
8. 2.03 089
9. 3.80 21

WATURAL

L

10

RADIANS

LO

3
2 114
2 382
5 519
3 633
3 724
2 799
7 383
4 919
4 963
se=2.7
.2 .8
18 2
79 38
18 1
44 4
85 6
32 8
87 9
10 1
22 2

4 5 8 b 8 2
145 176 204 230 233 279
380 398 415 431 477 382
531 544 556 588 580 591
343 653 863 872 681 890
732 740 748 758 763 771
308 813 820 828 332 839
339 875 331 886 392 808
924 920’934 940 944 949
on3: 978 982 987 391 996
18+ 10—2. 30 1000— 8. 91

100—+4.61 10000—+9.31

l4 .5_ 06 Oq 0,8 99
8 34 41 47 533 .3 84
3 83 92 98 93 *0B %05
3 22 25 23 31 384 38
8 48 30 33 35 37 59
7 80 WO 72 W4 T8 A7
4 83 87 89 90 92 93
9 *00. *Q1 *03 *04 *03 *07
2 13 14 15 18 17 19
3 24 25 28 27 28 29

TRIGONOMETRIC FPUNCTIONS

sin
00
o
17
2
- 54
> 4g
5
.g’]
« 04

.72

cos

tan
« 00
e O
. 19
« 2
«3
.4§
'go
-S4
1.0
cot

cot

none
11 4
5. 67
3. 73
2. 75
2. 14
1. 73

1. 43
1. 19

1. 00
tan

cos
1. 0

1. 0
.88
+ 97
- 94

1
4

i

sin

sec
1. 00
1. Q0
1. 023

i o8

1. 10
1. 15
1. 22
1. 52
1. 21

cs¢e

[1

csce
none

11.2

5-6
2. 92

2. 37
2. 00

It
1. 41

sec
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